Purpose
Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler’s perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps.
Design/methodology/approach
This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory (LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan Expressway are used for modeling training and testing.
Findings
Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this study context. The model provides new insights into traffic incident duration prediction.
Research limitations/implications
The incident samples applied by this study might not be enough and the variables are not abundant. The number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations.
Practical implications
The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in intelligent transport system and traffic management systems in future practical applications.
Originality/value
This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the deployment of emergency management and urban traffic navigation planning.
Background. Endometrial cancer greatly threatens the health of female. Emerging evidences have demonstrated that DNA methylation and immune infiltration are involved in the occurrence and development of endometrial cancer. However, the mechanism and prognostic biomarkers of endometrial cancer are still unclear. In this study, we assess DNA methylation and immune infiltration via bioinformatic analysis. Methods. The latest RNA-Seq, DNA methylation data, and clinical data related to endometrial cancer were downloaded from the UCSC Xena dataset. The methylation-driven genes were selected, and then the risk score was obtained using “MethylMix” and “corrplot” R packages. The connection between methylated genes and the expression of screened driven genes were explored using “survminer” and “beeswarm” packages, respectively. Finally, the role of VTCN1in immune infiltration was analyzed using “CIBERSORT” package. Results. In this study, 179 upregulated genes, and 311 downregulated genes were identified and found to be related to extracellular matrix organization, cell–cell junctions, and cell adhesion molecular binding. The methylation-driven gene VTCN1 was selected, and patients classified to the hypomethylation and high expression group displayed poor prognosis. The VTCN1 gene exhibited highest correlation coefficient between methylation and expression. More importantly, the hypomethylation of promoter of VTCN1 led to its high expression, thereby induce tumor development by inhibiting CD8+ T cell infiltration. Conclusions. Overall, our study was the first to reveal the mechanism of endometrial cancer by assessing DNA methylation and immune infiltration via integrated bioinformatic analysis. In addition, we found a pivotal prognostic biomarker for the disease. Our study provides potential targets for the diagnosis and prognosis of endometrial cancer in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.