BackgroundMost of the oral drugs have the properties of weak intestinal absorption and low bioavailability, which leads to little treatment to diseases. By nanotechnology, these drugs can be efficiently delivered to pass biological barriers and promote the cell uptake ability for the enhancement of the oral bioavailability.MethodsThe present work chose the prepared curcumin-loaded galactosylated albumin nanoparticles (Gal-BSA NPs) as the nano-drug samples to study the intestinal capacity and the oral bioavailability.ResultsThe cell uptake assay showed that the Gal-BSA NPs could promote the internalization of more curcumin into the Caco-2 cells. Moreover, the cell uptake mechanism of Gal-BSA-Cur NPs depended on the clathrin-mediated endocytosis transport. The intestinal permeation assay using one Ussing chamber exhibited that the absorptive amounts of curcumin in Gal-BSA-Cur NPs group were 1.5-fold of pure curcumin group. Meanwhile, the permeation mechanism of Gal-BSA-Cur NPs across the intestine mainly depended on the passive transport. The pharmacokinetics study in vivo suggested that the oral bioavailability of Gal-BSA-Cur NPs was improved by 1.4-fold compared with pure curcumin.ConclusionAll results demonstrated that Gal-BSA NPs could improve the intestinal absorption capacity and oral bioavailability of curcumin through the double absorption mechanisms of the clathrin-mediated endocytosis and the passive transport.
Molecular imprinted polymers (MIPs) have been widely applied in the separation of compounds in complex matrixes due to the high selectivity for molecular recognition. However, MIPs not only adsorb the targeted molecule but also adsorb structurally similar analogues, which leads to some loss of selectivity. In this work, for improvement of selectivity of MIPs, a novel solid-phase extraction method with two MIPs in two steps (TMIPs-TSPE) was established. As a demonstration, two MIPs were prepared by using quercetin as the template and 4-vinylypyridine (4VP) and acrylamide (AM) as representative functional monomers, respectively. The adsorption properties and kinetic characteristics of the two MIPs showed that they had a distinct adsorption capacity and adsorption mechanism, which is the basis for establishment of TMIPs-TSPE. The TMIPs-TSPE method first used one of the two MIPs as adsorbent to extract molecules from a solution mixture containing quercetin and three analogues. Then the other MIP was used to achieve a second extraction of the extracted molecules from the first step. The results showed that the unique targeted molecule quercetin was extracted, which illustrates that TMIPs-TSPE improved the specificity of the MIPs. The process of molecular recognition can be influenced by the intensity of binding sites between MIPs and molecules. Moreover, it may also depend on the spatial orientation of molecules entering the cavities of MIPs, which deserves more attention as one important property for the development of molecular imprinting. These results demonstrated that the novel TMIPs-TSPE method contributes to the improved selectivity of MIPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.