a b s t r a c tThis paper describes an immunomagnetic separation of target bacterial cells from others by using magnetic bead. The surface of bead was coated with antibodies which can capture specific organism. The binding efficiency of immunomagnetic bead (IMB) capturing target bacterial cells was higher than 98% when the concentrations of target and interferent bacterial cells were at the same level. The concentration of bacteria was determined indirectly by detecting adenosine 5 -triphosphate (ATP) employing bioluminescence (BL) reaction of firefly luciferin-ATP. Benzalkonium chloride (BAC) was used as an ATP extractant from living bacterial cells. We found that BAC could enhance the light emission when the concentration of BAC was less than 5.3 × 10 −2 % (w/v) and the BL intensity reached its maximum at the concentration of BAC was 2.7 × 10 −2 %, which was 10-fold stronger than that without BAC. Based on the principle of the IMB, a microfluidic chip combined with immunofluorescence assay for separating and detecting bacteria simultaneously was also developed. The IMBs were magnetically fixed in the beadbeds of chip channels with a 3-mm diameter of NdFeB permanent magnet. The target bacterial cells can be captured magnetically and observed by a fluorescent microscope.
The effects of polycyclic aromatic hydrocarbons on phytoplankton have been extensively documented, but there is limited knowledge about the physiological responses of marine primary producers to phenanthrene at environmentally relevant levels. Here, we investigated the toxicity of phenanthrene (0, 1, and 5 or 10 μg L−1) to the physiological performance of two cosmopolitan phytoplankton species: the green alga Chlorella vulgaris and bloom-forming diatom Skeletonema costatum. The specific growth rates of both species were remarkably inhibited at both low (1 μg L−1) and high phenanthrene concentrations (5 or 10 μg L−1), while their tolerance to phenanthrene differed. At the highest phenanthrene concentration (10 μg L−1), the growth of C. vulgaris was inhibited by 69%, and no growth was observed for S. costatum cells. The superoxide dismutase activity of both species was enhanced at high phenanthrene concentration, and increased activity of catalase was only observed at high phenanthrene concentration in C. vulgaris. Interestingly, the low phenanthrene concentration stimulated the photosynthetic and relative electron transport rates of S. costatum, whereas hormetic effects were not found for growth. Based on our results, phenanthrene could be detrimental to these two species at a environmentally relevant level, while different tolerance levels were detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.