Extreme summertime heat is becoming a major issue for aircraft operations. As global temperatures continue to rise, some of the heaviest planes on the longest flights may eventually be unable to depart during the hottest part of summer days. During summer days, some airports have to reduce the payload of aircraft, including cargo and/or passengers in the hotter days of summer. Nonetheless, there is no existing body of research on the potential for airport cooling. Furthermore, extreme heat on the ground also affects airport workers; loading and unloading luggage and servicing platforms between flights could become more arduous. With global warming proceeding, it is becoming increasingly urgent to find a suitable strategy to cool airport environments, perhaps by irrigation of a vegetated landscape. All airports have large enclosed areas (usually of grass) acting as a buffer between airport activities and the adjacent industrial, commercial and residential land utilization. This paper describes the trial of irrigating the buffer area of Adelaide airport and analyzes the performance of irrigation cooling for Adelaide airport, examining whether this can benefit human thermal comfort. Results indicate that irrigation provides cooling, and the cooling effect reduces along with the increasing instance from the middle of the irrigation area. At 15:00, the average air temperature was 1.8 °C cooler in the middle of the irrigation area than in the non-irrigation area, and the relative humidity was 5.8% higher during the trial period. On an extremely hot day (the maximum air temperature was 45.4 °C), it was 1.5 °C cooler in the middle of the irrigation area than upwind the of irrigation area, and 0.8 °C cooler than downwind of the irrigation area at 13:00. Human thermal comfort (HTC) is unfavorable in the runway, but greater improvements can be made through promotion of irrigation.
Bioretention is an important low impact technology that has prominent stormwater detention and purification capacity. Current study focused on analyzing the impact of environmental factors and system structure on bioretention evaporation efficiency. In operational phase, the moisture content in bioretention packing changes constantly, directly affecting the stagnation efficiency of the bioretention. Therefore, it is very important to study the evaporation efficiency of the bioretention for objective evaluation of hydrologic effects. In this study, an artificial climate chamber was used to investigate the effect of environmental factors and bioretention structure on the evaporation efficiency of bioretention. The evaporation capacity of bioretention was analyzed under different temperature and relative humidity conditions in a laboratory-scale artificial climate chamber. The result showed that evaporation rate at the initial stage was close to the maximum evaporation capacity under an environmentally controlled rapid decrease. Results revealed that after 15 h, the evaporation rate decreased more than 60%, and the evaporation rate decreased rapidly at the higher temperature, whereas the evaporation rate in the third stage was low and stable. It was about 1 mm/d (0.82~1.1 mm/d) and formed a dry soil layer. The results revealed that cumulative evaporation of the bioretention with a submerged zone was notably higher than that without the submerged zone, and the cumulative evaporation after 50 h was 16.48% higher. In the second stage of evaporation, the decreasing amplitude of the evaporation capacity of bioretention with the submerged zone was also relatively slow. Moisture content in upper layers in bioretention packing was recharged from the bottom submerged zone by capillary action and water vapor diffusion. These research findings can be used to evaluate the hydrologic effect of bioretention and can also be used to guide its design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.