Inspired by the cucumber-like structure, by combining the in situ chemical oxidative polymerization with facile soaking process, we designed the heterostructured nanomaterial with PEDOT as the shell and MnO(2) nanoparticles as the protuberance and synthesized the novel cucumber-like MnO(2) nanoparticles enriched vanadium pentoxide/poly(3,4-ethylenedioxythiophene) (PEDOT) coaxial nanowires. This heterostructured nanomaterial exhibits enhanced electrochemical cycling performance with the decreases of capacity fading during 200 cycles from 0.557 to 0.173% over V(2)O(5) nanowires at the current density of 100 mA/g. This method is proven to be an effective technique for improving the electrochemical cycling performance and stability of nanowire electrodes especially at low rate for application in rechargeable lithium batteries.
For efficient cancer vaccines, the antitumor function largely relies on cytotoxic T cells, whose activation can be effectively induced via antigen-encoding mRNA, making mRNA-based cancer vaccines an attractive approach for personalized cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.