Microphthalmia-associated transcription factor (MITF) is a master regulator in melanocyte proliferation, development, survival and melanoma formation. In melanocyte dysfunction disease, it is observed that the expressions of MITF, tyrosinase (TYR), tyrosinase related protein 1 (TYRP1) and tyrosinase related protein 2 (TYRP2)/dopachrome tautomerase (DCT) are changed, the consequence of which remains unclear. In this study, we focused on the change of microRNA (miRNA) profiles and Tyrosinase Related Proteins (TRPs) in MITF knocked down melanocytes. For the first time, we assayed the MITF-KD miRNA profiles using a miRNA microarray and found that hsa-miR-1225-3p, hsa-miR-634, hsa-miR-197, hsa-miR-766, hsa-miR-574-5p and hsa-miR-328 were upregulated, and hsa-miR-720 and hsa-miR-1308 were downregulated in MITF knocked down melanocytes. These miRNAs were validated by miRNA real time qPCR. These miRNA potential targets, especially the TRPs, were analyzed according to the miRNA database (Sanger Center). By TargetScan prediction, the hsa-miR-634 and hsa-miR-328 have poorly conserved sites on TYR and hsa-miR-197 have poorly conserved sites on TYR1. Through qPCR and western blotting we found that the expression of TYR and TYRP1 were dramatically decreased and the expression of TYRP2 was increased in MITF knocked down melanocytes (MITF-KD). These results suggested that the miRNAs may be involved in MITF regulation of TYR, TYRP1 and TYRP2, which provides a new clue for understanding the role of miRNAs in melanocyte dysfunctional disease.
Porcine epidemic diarrhea virus (PEDV) could cause lethal diarrhea and dehydration in suckling piglets, which can adversely affect the development of the global swine industry. The lack of effective therapeutical and prophylactic treatment especially for PEDV variant strains underlines the importance of effective antiviral strategies, such as identification of novel antiviral agents. In the present study, the antiviral activity of cinchonine against PEDV was investigated in Vero CCL81 and LLC-PK1 cells at a non-cytotoxic concentration determined by Cell Counting Kit-8 assay in vitro. We found that cinchonine exhibited a significant suppression effect against PEDV infection and its inhibitory action was primarily focused on the early stage of PEDV replication. Moreover, we also observed that cinchonine could significantly induce autophagy by detecting the conversion of LC3-I to LC3-II by using western blot analysis. Cinchonine treatment could inhibit PEDV replication in a dose-dependent manner in Vero CCL81 cells, while this phenomenon disappeared when autophagy was attenuated by pre-treatment with autophagy inhibitor 3MA. Consequently, this study indicated that cinchonine can inhibit PEDV replication via inducing cellular autophagy and thus from the basis for successful antiviral strategies which potentially suggest the possibility of exploiting cinchonine as a novel antiviral agent.
Fusarium head blight (FHB) is a worldwide devastating disease of wheat, caused primarily by species in the Fusarium graminearum (Fg) complex. In this study, we obtained 55 Fusarium isolates from wheat with FHB collected from seven provinces along the north of the Yangtze River. One additional phylogenetic species of Fg complex, Fusarium meridionale, was identified for the first time from China in addition to two known ones, Fusarium asiaticum and F. graminearum. In addition, Fusarium acuminatum, distantly related to Fg complex, was for the first time identified in Northern China. Sensitivities of these isolates to carbendazim were examined and appeared to vary both within and between species. Mycotoxin genotype analyses indicated that F. asiaticum isolates were potential 3-Ac-DON and NIV mycotoxin producers, while all F. graminearum isolates might be 15-AcDON producers. These findings would provide useful information for developing management strategies for the control of FHB in Northern China.
Porcine epidemic diarrhea virus (PEDV) variant strains adversely affect the production of pigs globally. Vaccines derived from PEDV traditional strains impart less protection against the variant strains. Moreover, sequence diversity among different PEDV variant strains is also complicated. This necessitates developing alternative antiviral strategies for defending against PEDV. This study explored a natural product, Levistolide A (LA), to possess antiviral activity against PEDV. LA was found to suppress PEDV replication in a dose-dependent manner. And the inhibitory effect of LA against PEDV was maintained in the course of time. In terms of viral RNA and protein production, LA also showed a strong inhibitory effect. In addition, LA was indicated to inhibit PEDV from attaching to the cellular membrane or penetrating the cells. Further study revealed that LA can induce the generation of reactive oxygen species (ROS), and the corresponding inhibitor, NAC, was found to antagonize the effect of LA on inhibiting PEDV replication. This illustrated that the LA-induced ROS generation played an important role in its anti-PEDV activity. LA was also identified to stimulate ER stress, which is an important consequence of ROS production and was proven to be able to inhibit PEDV replication. To conclude, this study revealed that LA can inhibit PEDV replication via inducing ROS generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.