◥Due to its intricate heterogeneity and limited treatment, hepatocellular carcinoma (HCC) has been considered a major cause of cancer-related mortality worldwide. Increasing evidence indicates that G-protein-coupled estrogen receptor 1 (GPER1) can promote estrogen-dependent hepatocellular proliferation by activating AKT signaling. The mTOR complex 2 (mTORC2), whose integrity and activity are modulated by its subunit Sin1, controls the activation of AKT by phosphorylation at position S473. In this study, we investigate the modulation of Sin1 and how estrogen signaling may influence the mTORC2-AKT cascade in HCC cells and a DEN-induced mouse model. We have found that estradiol-dependent Sin1 expression is transcriptionally modulated by GPER1 as well as ERa. GPER1 is able to regulate Sin1 stability via nuclear translocation, therefore increasing Sin1-mTORC2-AKT activation. Moreover, Sin1 interacts with ERa and further enhances its transcriptional activity. Sin1 is highly expressed in acute liver injury and in cases of HCC harboring high expression of GPER1 and constitutive activation of mTORC2-AKT signaling. GPER1 inhibition using the antagonist G-15 reverses DEN-induced acute liver injury by suppressing Sin1 expression and mTORC2-AKT activation. Notably, SIN1 expression varies between male and female mice in the context of both liver injury and liver cancer. In addition, high SIN1 expression is predictive of good prognosis in both male and female patients with HCC who are free from hepatitis virus infection and who report low alcohol consumption. Hence, here we demonstrate that Sin1 can be regulated by GPER1 both through nongenomic and indirect genomic signaling.Implications: This study suggests that Sin1 may be a novel HCC biomarker which is gender-dependent and sensitive to particular risk factor.
Background:
Fatty acid oxidation (FAO) is a major alternate energy metabolism pathway in tumor cells subjected to metabolic stress caused by glucose deficiency during rapid progression. However, the mechanism of metabolic reprogramming between glycolysis and FAO in tumor cells is unknown. Therefore, identifying the metabolic glucolipid conversion hub in tumor cells is crucial.
Methods:
We used single-cell RNA sequencing (scRNA-Seq), RNA sequencing (RNA-Seq), The Cancer Genome Atlas (TCGA), and chromatin immunoprecipitation sequencing (ChIP-Seq) to predict the critical regulator and mechanism of metabolic glucolipid conversion in colorectal cancer (CRC) tumor cells. We used Seahorse metabolic analysis, immunoblotting, immunofluorescence, and immunohistochemical (IHC) technology to verify the prediction and mechanism of this regulator in cancer cell lines, a nude mouse xenograft model, and clinical CRC samples.
Results:
We demonstrated that sirtuin-1 (SIRT1) was upregulated in CRC cells in response to glucose deprivation and oxidative stress. SIRT1 was also a hub of metabolic glucolipid conversion. SIRT1 upregulation deacetylated β-catenin, translocated it from the nucleus to the cytoplasm, attenuated glycolysis, and was positively correlated with fatty acid oxidation (FAO). Clinical analysis of SIRT1 expression in tumor tissues showed the SIRT1
High
profile was associated with poor prognosis in CRC patients. SIRT1 interference therapy significantly suppressed tumors in the mouse xenograft model.
Conclusions:
In hostile, glucose-deficient TMEs, SIRT1 is upregulated, and CRC cells transform the Warburg phenotype to FAO. SIRT1 indicates the frequency of glucolipid transformation and rapid tumor progression and is a promising therapeutic target of CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.