In this content, a small molecular ligand of prostate specific membrane antigen (SMLP) conjugated poly (caprolactone) (PCL)-b-poly (ethylene glycol) (PEG) copolymers with different block lengths were synthesized to construct a satisfactory drug delivery system. Four different docetaxel-loaded polymeric micelles (DTX-PMs) were prepared by dialysis with particle sizes less than 60 nm as characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). Optimization of the prepared micelles was conducted based on short-term stability and drug-loading content. The results showed that optimized systems were able to remain stable over 7 days. Compared with Taxotere, DTX-PMs with the same ratio of hydrophilic/hydrophobic chain length displayed similar sustained release behaviors. The cytotoxicity of the optimized targeted DTX-PCL12K-PEG5K-SMLP micelles (DTX-PMs2) and non-targeted DTX-PCL12K-mPEG5K micelles (DTX-PMs1) were evaluated by MTT assays using prostate specific membrane antigen (PSMA) positive prostate adenocarcinoma cells (LNCaP). The results showed that the targeted micelles had a much lower IC50 than their non-targeted counterparts (48 h: 0.87±0.27 vs 13.48±1.03 µg/ml; 72 h: 0.02±0.008 vs 1.35±0.54 µg/ml). In vitro cellular uptake of PMs2 showed 5-fold higher fluorescence intensity than that of PMs1 after 4 h incubation. According to these results, the novel nano-sized drug delivery system based on DTX-PCL-PEG-SMLP offers great promise for the treatment of prostatic cancer.
A strategy that can modulate biological response such as pharmacokinetics, cell uptake and biodistribution of NPs simply by tunable coatings was established.
Abstract:In this work, micelles composed of doxorubicin-conjugated Y-shaped copolymers (YMs) linked via an acid-labile linker were constructed. Y-shaped copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin) 2 and linear copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin) were synthesized and characterized. Particle size, size distribution, morphology, drug loading content (DLC) and drug release of the micelles were determined. Alterations in size and DLC of the micelles could be achieved by varying the hydrophobic block lengths. Moreover, at fixed DLCs, YMs showed a smaller diameter than micelles composed of linear copolymers (LMs). Also, all prepared micelles showed sustained release behaviors under physiological conditions over 72 h. DOX loaded in YMs was released more completely, with 30% more drug released in acid. The anti-tumor efficacy of the micelles against HeLa cells was evaluated by MTT assays, and YMs exhibited stronger cytotoxic effects than LMs in a dose-and time-dependent manner. Cellular uptake studied by CLSM indicated that YMs and LMs were readily taken up by HeLa cells. According to the results of this study, doxorubicin-conjugated Y-shaped PEG-(polypeptide) 2 copolymers showed advantages over linear copolymers, like assembling into smaller nanoparticles, faster drug release in acid, which may correspond to higher OPEN ACCESSMolecules 2014, 19 11916 cellular uptake and enhanced extracellular/intracellular drug release, indicating their potential in constructing nano-sized drug delivery systems.
With a long history of application in Chinese traditional medicine, berberine (BBR) was reported to exhibit healthspan-extending properties in some age-related diseases, such as type 2 diabetes and atherosclerosis. However, the antiaging mechanism of BBR is not completely clear. By means of hydrogen peroxide- (H2O2-) induced premature cellular senescence model, we found that a low-concentration preconditioning of BBR could resist premature senescence in human diploid fibroblasts (HDFs) measured by senescence-associated β-galactosidase (SA-β-gal), accompanied by a decrease in loss of mitochondrial membrane potential and production of intracellular reactive oxygen species (ROS). Moreover, the low-concentration preconditioning of BBR could make cells less susceptible to subsequent H2O2-induced cell cycle arrest and growth inhibition. Experimental results further showed that the low concentration of BBR could induce a slight increase of ROS and upregulate the expression level of sirtuin 1 (SIRT1), an important longevity regulator. H2O2-induced activation of checkpoint kinase 2 (Chk2) was significantly attenuated after the preconditioning of BBR. The present findings implied that the low-concentration preconditioning of BBR could have a mitohormetic effect against cellular senescence triggered by oxidative stress in some age-related diseases through the regulation of SIRT1.
Since the safety and stability of the original tunnel structure are easily affected by the adjacent foundation pit excavation, it is strongly necessary to study the deformation evolution of tunnels during the adjacent foundation pit excavation. With regard to the two cases that tunnel is adjacently located at the right and bottom of foundation pit, the influence of different supporting methods, including pile support, bolt support, pile-bolt support, and shotcrete-bolt support, on the tunnel stability was investigated on the basis of the whole excavation process numerical simulation of deep foundation pit for determining the best foundation pit supporting beneficial to the stability of adjacent tunnel. The results indicate that both one-step excavation and multistep excavation have great influences on the displacement of adjacent tunnels, wherein the influences on the tunnel located at the right of foundation pit are greater than those at the bottom of foundation pit. Multistep excavation is recommended for the foundation pit adjacent to shallow tunnel. In the case of the tunnel located on the bottom of the foundation pit, the maximum stress generated around the tunnel is small, the maximum stress area is limited, and the displacement of tunnel monitoring points is also small. For the tunnel located at the right of the foundation pit, the pile-bolt supporting can effectively limit the displacement of soil between the tunnel and the foundation pit, reduce the maximum stress and the maximum stress distribution area, and effectively control the tunnel displacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.