Models for drug release from bioerodible polymer matrices are proposed in this article. We consider that drug is released continually by diffusion that is influenced by polymer chain degradation, and polymer matrix erosion starts and enhances the drug release at a certain time. The models give excellent reproduction of drug release profiles within the whole release period, and the parameters can be correlated to various factors such as gamma-irradiation dose, copolymer composition, and initial drug loading, this correlation indicates that the new models can be used to predict the effects of various factors on drug release profiles based on limited experimental data.
Effective fault diagnosis is essential to ensure the safe and reliable operation of equipment. In recent years, several transfer learning-based methods for diagnosing faults under variable working conditions have been developed. However, these models are designed to completely match the feature distributions between different domains, which is difficult to accomplish because each domain has unique characteristics. To solve this problem, we propose a framework based on the maximum classifier discrepancy with marginal probability distribution adaptation that focuses on task-specific decision boundaries. Specifically, this method captures ambiguous target samples through the predicted discrepancy between two classifiers for the target samples. Furthermore, marginal probability distribution adaptation facilitates the capture of target samples located far from the source domain, and these target samples are brought closer to the source domain through adversarial training. Experimental results indicate that the proposed method demonstrates higher performance and generalization ability than existing fault diagnosis methods.
As a practical tool for big data processing, deep learning not only has drawn extensive attentions in the inherent law and representation level of sample data, but also has been widely concerned in the field of mechanical intelligent fault diagnosis. In deep learning models, autoencoder (AE) and its derivative models can automatically extract useful features from big data, and many researchers have successfully applied them to the field of intelligent fault diagnosis. However, these studies always neglect two important points as follows: (1) the model training process will not be ideal when the original training dataset is insufficient; (2) the learning content of the network model is not clear. In order to surmount the above deficiencies, this paper proposes a novel framework named Data-enhanced Stacked Autoencoders (DESAE), which consists of a data enhancement module and a fault classification module. In the data enhancement module, SAE is adopted to generate simulated signals to strengthen the insufficient training data. In the fault classification module, the enhanced dataset is used to train another SAE model for fault type recognition. Meanwhile, two bearing datasets are employed to validate the efficiency of the proposed method. The experimental results show that the proposed method is superior to the method without enhanced data. In addition, the visual analysis of the learning characteristics in each layer of DESAE is presented, which is helpful to understand the working process of DESAE. INDEX TERMS Intelligent fault diagnosis, deep learning, data-enhanced stacked auto-encoders, insufficient training data, simulated signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.