Isofraxidin is an active component of several traditional and functional plants that have beneficial properties for neurodegenerative diseases. In this study, we examined whether isofraxidin exhibited antidepressant-like effects in chronic unpredictable mild stress (CUMS)-induced mice. Firstly, isofraxidin could reverse CUMS-induced decrease in body weight gain in mice. Additionally, in the sucrose preference test (SPT), isofraxidin reversed the decrease in sucrose consumption due to CUMS-induced depressive-like behavior. Isofraxidin also increased locomotor activity in the open field test (OFT) and alleviated immobility duration in the forced swimming test (FST) and tail-suspension test (TST). Furthermore, isofraxidin decreased levels of corticosterone (CORT), adrenocorticotropic hormone (ACTH), and hypothalamus corticotrophin-releasing hormone (CRH) in the serum after CUMS-induced hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Also, isofraxidin suppresses tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 expression in the hippocampus of CUMS mice. Further investigations demonstrated that isofraxidin inhibited CUMS-induced activation of nuclear factor kappa B (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasomes in the hippocampus. Summarily, in CUMS-induced mice, isofraxidin reduced depressive-like behaviors, accompanied by its inhibitory effects on hyperactivity of the HPA axis and NF-κB /NLRP3 inflammasomes pathways.
Background: Isofraxidin is a coumarin compound mainly isolated from several traditional and functional edible plants bene cial for neurodegenerative diseases, including Sarcandra glabra and Apium graveolens, and Siberian Ginseng.Objective: This study aimed to assess effects of isofraxidin against memory impairments and cognition de cits in a scopolamine-induced mouse model.Materials & methods: Animals were randomly divided into 6 groups, control, vehicle, donepezil (10 mg/kg, p.o.), and isofraxidin (3, 10, and 30 mg/kg, p.o.). Isofraxidin or donepezil was administered for 44 days, once per day. The scopolamine insults (1 mg/kg, i.p.) was given from the 21 st day, once per day. Morris water maze test and Y-maze test were used for the behavioral test. After that, brain samples were collected for analysis.Results: Firstly, isofraxidin signi cantly improved scopolamine-induced behavioral impairments and cognition de cits in Morris water maze and Y-maze test. Then, isofraxidin facilitated cholinergic activity via inhibiting acetylcholinesterase (AChE) activity. Besides, isofraxidin decreased lipid peroxidation level but enhanced levels of glutathione, glutathione peroxidase, and superoxide dismutase. Moreover, isofraxidin suppressed the expression of in ammatory mediators and cytokines. Further investigations showed that isofraxidin up-regulated expression of brain-derived neurotrophic factor (BDNF), and promoted phosphorylation of tropomyosin-related kinase B (TrkB), cyclic AMP-response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK).Discussion & Conclusion: These results suggested that isofraxidin ameliorated scopolamine-induced cognitive and memory impairments, possibly through regulating AChE activity, suppressing oxidative stress and in ammatory response, and modulating BDNF-CREB-ERK pathways.
Background: Isofraxidin is a coumarin compound mainly isolated from several traditional and functional edible plants beneficial for neurodegenerative diseases, including Sarcandra glabra and Apium graveolens, and Siberian Ginseng. Objective: This study aimed to assess effects of isofraxidin against memory impairments and cognition deficits in a scopolamine-induced mouse model.Materials & methods: Animals were randomly divided into 6 groups, control, vehicle, donepezil (10 mg/kg, p.o.), and isofraxidin (3, 10, and 30 mg/kg, p.o.). Isofraxidin or donepezil was administered for 44 days, once per day. The scopolamine insults (1 mg/kg, i.p.) was given from the 21st day, once per day. Morris water maze test and Y-maze test were used for the behavioral test. After that, brain samples were collected for analysis. Results: Firstly, isofraxidin significantly improved scopolamine-induced behavioral impairments and cognition deficits in Morris water maze and Y-maze test. Then, isofraxidin facilitated cholinergic activity via inhibiting acetylcholinesterase (AChE) activity. Besides, isofraxidin decreased lipid peroxidation level but enhanced levels of glutathione, glutathione peroxidase, and superoxide dismutase. Moreover, isofraxidin suppressed the expression of inflammatory mediators and cytokines. Further investigations showed that isofraxidin up-regulated expression of brain-derived neurotrophic factor (BDNF), and promoted phosphorylation of tropomyosin-related kinase B (TrkB), cyclic AMP-response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK).Discussion & Conclusion: These results suggested that isofraxidin ameliorated scopolamine-induced cognitive and memory impairments, possibly through regulating AChE activity, suppressing oxidative stress and inflammatory response, and modulating BDNF-CREB-ERK pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.