Huanglongbing (HLB) is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves). Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.
Bletilla striata (Thunb.) Rchb. f. (Orchidaceae) is traditionally used for hemostasis and detumescence in China. In April 2019, a leaf spot disease on B. striata was observed in plant nurseries in Guilin, Guangxi Province, China, with an estimated incidence of ~30%. Initial symptoms include the appearance of circular or irregular brown spots on leaf surfaces, which progressively expand into large, dark brown, necrotic areas. As lesions coalesce, large areas of the leaf die, ultimately resulting in abscission. To isolate the pathogen, representative samples exhibiting symptoms were collected, leaf tissues (5 × 5 mm) were cut from the junction of diseased and healthy tissue, surface-disinfected in 1% sodium hypochlorite solution for 2 min, rinsed three times in sterile water, plated on potato dextrose agar (PDA) medium, and incubated at 28°C (12-h light-dark cycle) for 3 days. Hyphal tips from recently germinated spores were transferred to PDA to obtain pure cultures. Nine fungal isolates with similar morphological characteristics were obtained. Colonies on PDA were villose, had a dense growth of aerial mycelia and appeared pinkish white from above and greyish orange at the center and pinkish-white at the margin on the underside. Macroconidia were smooth, and hyaline, with a dorsiventral curvature, hooked to tapering apical cells, and 3- to 5-septate. Three-septate macroconidia were 21.2 to 32.1 × 2.4 to 3.9 μm (mean ± SD: 26.9 ± 2.5 × 3.2 ± 0.4 μm, n = 30); 4-septate macroconidia were 29.5 to 38.9 × 3.0 to 4.3 μm (mean ± SD: 33.5 ± 2.6 × 3.6 ± 0.3 μm, n = 40); and 5-septate macroconidia were 39.3 to 55.6 × 4.0 to 5.4 μm (mean ± SD: 48.0 ± 3.9 × 4.5 ± 0.3 μm, n = 50). These morphological characteristics were consistent with F. ipomoeae, a member of the Fusarium incarnatum-equiseti species complex (FIESC) (Wang et al. 2019). To confirm the fungal isolate’s identification, the genomic DNA of the single-spore isolate BJ-22.3 was extracted using the CTAB method (Guo et al. 2000). The internal transcribed space (ITS) region of rDNA, translation elongation factor-1 alpha (TEF-1α), and partial RNA polymerase second largest subunit (RPB2) were amplified using primer pairs [ITS1/ITS4 (White et al. 1990), EF-1/EF-2 (O’Donnell et al. 1998), and 5f2/11ar (Liu, Whelen et al. 1999, Reeb, Lutzoni et al. 2004), respectively]. The ITS (MT939248), TEF-1α (MT946880), and RPB2 (MT946881) sequences of the BJ-22.3 isolate were deposited in GenBank. BLASTN analysis of these sequences showed over 99% nucleotide sequence identity with members of the FIESC: the ITS sequence showed 99.6% identity (544/546 bp) to F. lacertarum strain NRRL 20423 (GQ505682); the TEF-1α sequence showed 99.4% similarity (673/677 bp) to F. ipomoeae strain NRRL 43637 (GQ505664); and the RPB2 sequence showed 99.6% identity (1883/1901 bp) to F. equiseti strain GZUA.1657 (MG839492). Phylogenetic analysis using concatenated sequences of ITS, TEF-1α, and RPB2 showed that BJ-22.3 clustered monophyletically with strains of F. ipomoeae. Therefore, based on morphological and molecular characteristics, the isolate BJ-22.3 was identified as F. ipomoeae. To verify the F. ipomoeae isolate’s pathogenicity, nine 1.5-year-old B. striata plants were inoculated with three 5 × 5 mm mycelial discs of strain BJ-22.3 from 4-day-old PDA cultures. Additionally, three control plants were inoculated with sterile PDA discs. The experiments were replicated three times. All plants were enclosed in transparent plastic bags and incubated in a greenhouse at 26°C for 14 days. Four days post-inoculation, leaf spot symptoms appeared on the inoculated leaves, while no symptoms were observed in control plants. Finally, F. ipomoeae was consistently re-isolated from leaf lesions from the infected plants. To our knowledge, this is the first report of F. ipomoeae causing leaf spot disease on B. striata in China. The spread of this disease might pose a serious threat to the production of B. striata. Growers should implement disease management to minimize the risks posed by this pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.