Modelling events in densely crowded environments remains challenging, due to the diversity of events and the noise in the scene. We propose a novel approach for anomalous event detection in crowded scenes using dynamic textures described by the Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) descriptor. The scene is divided into spatio-temporal patches where LBP-TOP based dynamic textures are extracted. We apply hierarchical Bayesian models to detect the patches containing unusual events. Our method is an unsupervised approach, and it does not rely on object tracking or background subtraction. We show that our approach outperforms existing state of the art algorithms for anomalous event detection in UCSD dataset.
We study the min-cost seed selection problem in online social networks, where the goal is to select a set of seed nodes with the minimum total cost such that the expected number of influenced nodes in the network exceeds a predefined threshold. We propose several algorithms that outperform the state-of-the-art algorithms both theoretically and experimentally. Under the case where the users have heterogeneous costs, our algorithms are the first bi-criteria approximation algorithms with polynomial running time and provable logarithmic performance bounds using a general contagion model. Under the case where the users have uniform costs, our algorithms achieve logarithmic approximation ratio and provable time complexity which is smaller than that of existing algorithms in orders of magnitude. We conduct extensive experiments using real social networks. The experimental results show that, our algorithms significantly outperform the existing algorithms both on the total cost and on the running time, and also scale well to billion-scale networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.