Multifunctional polymer coatings have potential applications in biomaterials. These coatings possess reactive functional groups for the immobilization of specific biological factors that can influence cellular behavior. These coatings also display low nonspecific protein adsorption. In this study, we prepared a multifunctional polymer coating through the deposition of random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and glycidyl methacrylate (GMA) to prevent nonspecific attachment and enable the covalence of Arg-Glu-Asp-Val (REDV) peptide with endothelial cells (ECs) selectivity. Coatings were characterized by X-ray photoelectron spectroscopy (XPS). The adhesion and proliferation of ECs and smooth muscle cells (SMCs) onto the REDV-modified surface were investigated to understand the synergistic action of antifouling PEG and EC selective REDV peptide conjugated GMA. The copolymers containing GMA and PEG groups are very useful as a multifunctional coating material with anti-fouling and ECs specific adhesion for implant materials surface modification.
Zwitterionic copolymers keep good resistance to platelet adhesion and nonspecific protein adsorption. In this study, A block copolymer brushes consisting of carboxybetaine methacrylate (CBMA) and glycidyl methacrylate (GMA) were grafted from silicon wafers via surface-initiated atom transfer radical polymerization, and then the Arg-Glu-Asp-Val (REDV) peptide was attached to the polymer brush via an reactive epoxy group of the P(GMA) unit to improve endothelial cells (ECs) selectivity. These modified surfaces were evaluated with scanning electron microscopy, atomic force microscopy, attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy, and static water contact angle measurement. The results showed that REDV-modified zwitterionic brushes were successfully constructed on silicon wafers. The biocompatibility of the membrane was determined by plasma recalcification time assay and platelet adhesion test. The results showed that the modified substrate exhibited good blood compatibility. Moreover, the proliferation of ECs and smooth muscle cells onto the REDV-modified copolymer brushes were examined to demonstrate the synergistic effect of CBMA with antifouling property and REDV peptide with ECs selectivity. All assays showed that the silicon wafers displayed excellent EC selectivity after modification. In summary, REDV-modified zwitterionic brushes had great potential for cardiovascular stent implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.