This paper studies dynamic reinsurance contracting and competition problems under model ambiguity in a reinsurance market with one primary insurer and n reinsurers, who apply the variance premium principle and who are distinguished by their levels of ambiguity aversion. The insurer negotiates reinsurance policies with all reinsurers simultaneously, which leads to a reinsurance tree structure with full competition among the reinsurers. We model the reinsurance contracting problems between the insurer and reinsurers by Stackelberg differential games and the competition among the reinsurers by a non-cooperative Nash game. We derive equilibrium strategies in semi-closed form for all the companies, whose objective is to maximize their expected surpluses penalized by a squared-error divergence term that measures their ambiguity. We find that, in equilibrium, the insurer purchases a positive amount of proportional reinsurance from each reinsurer. We further show that the insurer always prefers the tree structure to the chain structure, in which the risk of the insurer is shared sequentially among all reinsurers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.