The soil environment is an important sink for penicillin antibiotics released from animal manure and wastewater, but the mineral-catalyzed transformation of penicillins in soil has not been well studied. To simulate this environmental process, we systematically investigated the behavior of penicillin G and amoxicillin, the two most widely-used penicillin antibiotics, in the presence of goethite and metal ions. The results demonstrated that Zn ions significantly promoted the hydrolysis of penicillins in goethite suspensions, as evidenced by the degradation rate nearly 3 orders of magnitude higher than that of the non-Zn-containing control. The spectroscopic analysis indicated that the specific complexation between penicillins, adsorbed Zn, and goethite was responsible for the enhanced degradation. Metastable interactions, involving hydrogen bonds between carbonyl groups in the β-lactam ring and the double/triple hydroxyl groups on goethite surface, and coordination bonding between carboxyl groups and surface irons were proposed to stabilize the ternary reaction intermediates. Moreover, the surface zinc-hydroxide might act as powerful nucleophile to rapidly rupture the β-lactam ring in penicillins. This study is among the first to identify the synergic roles of Zn ion and goethite in facilitating penicillin degradation and provides insights into β-lactam antibiotics to assess their environmental risk in soil.
Detection of 2,4,6-trinitrotoluene (TNT) has been extensively studied since it is a common explosive filling for landmines, posing significant threats to the environment and human safety. The rapid advances in synthetic biology give new hope to detect such toxic and hazardous compounds in a more sensitive and safe way. Biosensor construction anticipates finding sensing elements able to detect TNT. As TNT can induce some physiological responses in E. coli, it may be useful to define the sensing elements from E. coli to detect TNT. An E. coli MG1655 genomic promoter library containing nearly 5,400 elements was constructed. Five elements, yadG, yqgC, aspC, recE, and topA, displayed high sensing specificity to TNT and its indicator compounds 1,3-DNB and 2,4-DNT. Based on this, a whole cell biosensor was constructed using E. coli, in which green fluorescent protein was positioned downstream of the five sensing elements via genetic fusion. The threshold value, detection time, EC200 value, and other aspects of five sensing elements were determined and the minimum responding concentration to TNT was 4.75 mg/L. According to the synthetic biology, the five sensing elements enriched the reservoir of TNT-sensing elements, and provided a more applicable toolkit to be applied in genetic routes and live systems of biosensors in future.
Soil contamination with antibiotics has raised great environmental concerns, while the abiotic degradation of antibiotics on drought soil particles has been largely ignored. In this study, we examined the transformation of chloramphenicol (CAP) on phyllosilicates under nonaqueous conditions. A significant hydrolysis of CAP mediated by kaolinite occurred under moderate relative humidities (RH: 33–76%) with the half-lives of 10–20 days. By contrast, incubation with montmorillonite did not result in detectable degradation of CAP. Infrared and Raman spectroscopies together with density functional theory calculations suggested that the surface-catalyzed CAP hydrolysis was mainly attributed to the basal plane hydroxyl groups of kaolinite, which formed hydrogen-bond interactions with the carbonyl of CAP such that the hydrolysis activation energy of CAP was greatly reduced. Neither the Brønsted nor the Lewis acidity was the determinant for the hydrolysis reaction. The surface moisture content played an essential role in CAP hydrolysis. Specifically, water facilitated the mass transfer of CAP over the low-RH range, whereas excessive water competed for the reactive hydroxyl sites. These results highlight an important but long-overlooked abiotic transformation pathway for antibiotics in field soil, where the soil moisture is low and the microbial activity is suppressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.