Time-interleaved analog-to-digital converter (TI-ADC) technology can increase the sampling rate without changing resolution. But, the dynamic performance of TI-ADC system is seriously deteriorated by channel mismatches. Under the condition of large bandwidth, gain mismatch and timing mismatch vary with the frequency, which cannot be regarded as fixed values. To improve the dynamic performance of the TI-ADC system, an automatic calibration method of channel mismatches for wideband TI-ADC system is proposed in this article. Frequency-dependent channel mismatches are estimated by the algorithm based on sine fitting, and compensated by the means based on perfect reconstruction. The entire sampling and calculation process is automated and tedious operation is simplified. A 6.8-GS/s 12-bit wideband TI-ADC system is implemented. This sampling system can achieve SNDR (signal-to-noise and distortion ratio) above 49 dB and SFDR (spurious-free dynamic range) above 57 dB for an input signal from 100 MHz to 3300 MHz. The proposed calibration method improves the SNDR over 10 dB and the SFDR over 15 dB. The dynamic performance of the sampling system is close to that of its sub-ADC.
A cylindrical resonator gyroscope is a kind of Coriolis gyroscope, which measures angular velocity or angle via processing of the standing wave. The symmetry of a cylindrical resonator is destroyed by different degrees of geometric nonuniformity and structural damage in the machining process. The uneven mass distribution caused by the asymmetry of the resonator can be expressed in the form of a Fourier series. The first three harmonics will reduce the anti-interference ability of the resonator to the external vibration, as well as increase the angular random walk and zero-bias drift of the gyroscope. In this paper, the frequency split of different modes caused by the first three harmonic errors and the displacement of the center of the cylindrical resonator bottom plate are obtained by simulation, and the relationship between them is explored. The experimental results on five fused silica cylindrical resonators are consistent with the simulation, confirming the linear relationship between the n = 1 frequency split and second harmonic error. A method for evaluating the first three harmonic errors of fused silica cylindrical resonators is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.