Excessive smartphone use causes personal and social problems. To address this issue, we sought to derive usage patterns that were directly correlated with smartphone dependence based on usage data. This study attempted to classify smartphone dependence using a data-driven prediction algorithm. We developed a mobile application to collect smartphone usage data. A total of 41,683 logs of 48 smartphone users were collected from March 8, 2015, to January 8, 2016. The participants were classified into the control group (SUC) or the addiction group (SUD) using the Korean Smartphone Addiction Proneness Scale for Adults (S-Scale) and a face-to-face offline interview by a psychiatrist and a clinical psychologist (SUC = 23 and SUD = 25). We derived usage patterns using tensor factorization and found the following six optimal usage patterns: 1) social networking services (SNS) during daytime, 2) web surfing, 3) SNS at night, 4) mobile shopping, 5) entertainment, and 6) gaming at night. The membership vectors of the six patterns obtained a significantly better prediction performance than the raw data. For all patterns, the usage times of the SUD were much longer than those of the SUC. From our findings, we concluded that usage patterns and membership vectors were effective tools to assess and predict smartphone dependence and could provide an intervention guideline to predict and treat smartphone dependence based on usage data.
Background: Immunohistochemistry (IHC) has played an essential role in the diagnosis of hematolymphoid neoplasms. However, IHC interpretations can be challenging in daily practice, and exponentially expanding volumes of IHC data are making the task increasingly difficult. We therefore developed a machine-learning expert-supporting system for diagnosing lymphoid neoplasms. Methods: A probabilistic decision-tree algorithm based on the Bayesian theorem was used to develop mobile application software for iOS and Android platforms. We tested the software with real data from 602 training and 392 validation cases of lymphoid neoplasms and compared the precision hit rates between the training and validation datasets. Results: IHC expression data for 150 lymphoid neoplasms and 584 antibodies was gathered. The precision hit rates of 94.7% in the training data and 95.7% in the validation data for lymphomas were not statistically significant. Results in most B-cell lymphomas were excellent, and generally equivalent performance was seen in T-cell lymphomas. The primary reasons for lack of precision were atypical IHC profiles for certain cases (e.g., CD15-negative Hodgkin lymphoma), a lack of disease-specific markers, and overlapping IHC profiles of similar diseases. Conclusions: Application of the machine-learning algorithm to diagnosis precision produced acceptable hit rates in training and validation datasets. Because of the lack of origin-or disease-specific markers in differential diagnosis, contextual information such as clinical and histological features should be taken into account to make proper use of this system in the pathologic decision-making process.
Several studies have been conducted to evaluate the efficacy of statins in Korean and Asian patients. However, most previous studies only observed the percent reduction in low-density lipoprotein cholesterol (LDL-C) and did not consider the effects of various patient conditions simultaneously, such as abnormal test results, patient demographics, and prescribed drugs before taking a statin. Moreover, the characteristics of the patients whose percent reduction in LDL-C was higher than expected were not provided. Therefore, in this study, we aimed to derive meaningful phenotypes by using tensor factorization to observe the characteristics of the patients whose percent reduction in LDL-C was higher than expected among patients taking moderate-intensity statins. In addition, we used the derived phenotypes to predict how much the LDL-C levels of new patients decreased. We consequently identified eight phenotypes that represented the characteristics of the patients whose percent reduction in LDL-C was higher than expected. Moreover, the latent representations of the derived phenotypes achieved prediction performance similar to that obtained using the raw data. These results demonstrate that the derived phenotypes and latent representations are useful tools for observing the characteristics of patients and predicting LDL-C levels. Additionally, our findings provide direction on how to conduct clinical studies in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.