Compared to beta-cyclodextrins (beta-CD), hydroxypropyl-beta-cyclodextrins (HP-beta-CD) are a more popular material used to prepare inclusion complexes due to their superior solubility and intestinal absorption. In this study, oleuropein (OL) inclusion complexes with beta-CD (beta-CD:OL) and HP-beta-CD (HP-beta-CD:OL) were prepared and the formation of inclusion complexes was validated by IR, PXRD, and DSC. A phase solubility test showed that the lgK (25 °C) and binding energy of beta-CD:OL and HP-beta-CD:OL was 2.32 versus 1.98, and −6.1 versus −24.66 KJ/mol, respectively. Beta-CD:OL exhibited a more powerful effect than HP-beta-CD:OL in protecting OL from degradation upon exposure to light, high temperature and high humidity. Molecular docking, peak intensity of carbonyls in IR, and ferric reducing power revealed that beta-CD:OL formed more hydrogen bonds with the unstable groups of OL. Both inclusion complexes significantly enhanced the solubility, intestinal permeation and antioxidant activity of OL (p < 0.05). Though HP-beta-CD:OL had higher solubility and intestinal absorption over beta-CD:OL, the difference was not significant (p > 0.05). The study implies that lower binding energy is not always associated with the higher stability of a complex. Beta-CD can protect a multiple-hydroxyl compound more efficiently than HP-beta-CD with the intestinal permeation comparable to HP-beta-CD complex.
Background: Cyclodextrins (CDs) are commonly used host molecules of inclusion complex. However, due to the lack of sensitive method to determine CDs, the absorption process of CDs remains unclear. Objective: In this study, oleuropein (OL) inclusion complex employing hydroxylpropyl-beta-cyclodextrin (HP-beta-CD) as host molecules was prepared and the formation of inclusion complex was ascertained by FT-IR and DSC. A spectrophotometry was established for the determination of HP-beta-CD, based on the fact that the absorbance of phenolphthalein (PP) decreased in the presence of HP-beta-CD. Methods: The assay conditions were optimized to augment the method sensitivity. Molecular docking was employed to verify the strong interaction between PP and HP-beta-CD. The permeation process of free HP-beta-CD, HP-beta-CD of OL inclusion complex, free OL, and OL in the inclusion complex, was examined, respectively, using an in vitro mouse small intestine model. Results: Though HP-beta-CD possessed hydrophilic outside shell, it could permeate through mouse small intestine quickly with cumulative permeating amount over 90% in 2 h. Free HP-beta-CD, the host molecule HP-beta-CD, and guest molecule OL of the inclusion complex exhibited the consistent permeating profiles across mouse small intestine. Conclusion: The approach for the determination of HP-beta-CD was accurate and precise (%RSD=2.98).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.