Mouse hepatitis virus (MHV) produces a series of subgenomic RNAs for viral protein expression. As a prototype coronavirus, MHV has been explored extensively and is often used to express foreign proteins. Previously, a 13-residue deletion in the MHV spike (S) protein endodomain was found to reduce syncytium formation dramatically while inhibiting virus replication slightly. In this study, the effects of the S mutation on MHV infectivity and foreign protein expression were further examined in rat or mouse L2, NIH/3T3 and Neuro-2a cells. The replacement of the MHV 2a/haemagglutinin-esterase gene with a membrane-anchored protein hook (HK) and replacement of gene 4 with EGFP did not change the adaptability and cytopathology of recombinant viruses in these cells. However, the cytopathic effect of the recombinants with the partial S deletion was reduced significantly in these cells. The replication and foreign protein expression of the S-mutated recombinants were found to be more efficient in L2 cells than in Neuro-2a and NIH/3T3 cells. Meanwhile, the distribution patterns of HK and EGFP expressed by the recombinant viruses were similar to those in cells transfected with a eukaryotic expression vector. These results suggest that the partial deletion in the S endodomain may increase the usefulness of MHV as a viral vector by attenuation and maintaining foreign protein expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.