Nonalcoholic fatty liver disease (NAFLD) is typified by accumulating excess liver triacylglycerol, inflammation, and liver dysfunction. This study was aimed to investigate the role of mitochondrial DNA synthesis-induced activation of Absent in melanoma 2 (AIM2) inflammasome and pyroptosis in NAFLD. Mice were raised on a high-fat diet for 24 weeks to establish NAFLD models. F4/80 immunofluorescence was performed to reflect the inflammatory response in the liver of mice. Western blot, ELISA, and immunofluorescence were adopted to determine the expression of AIM2 inflammasome-related proteins and factors. EdU immunofluorescence was applied for the examination of mitochondrial DNA expression and flow cytometry for cell pyroptosis. Agarose gel electrophoresis was used to detect the integrity of extracted mouse mitochondrial DNA (mtDNA). The levels of AIM2 inflammasome-related proteins in the liver and the levels of IL-1β and IL-18 in serum were elevated in high-fat diet-induced NAFLD mice. AIM2 inflammasome activation and pyroptosis were triggered, and suppressed activation of AIM2 inflammasome alleviated the inflammation and pyroptosis in the liver of NAFLD mice. Mitochondria were severely damaged and mtDNA was synthesized after NAFLD modeling. Further, mtDNA treatment could promote palmitate (PA)-induced activation of AIM2 inflammasome and pyroptosis. Moreover, inhibition of IRF1 gene alleviated PA-induced AIM2 inflammasome activation and pyroptosis. In conclusion, mitochondrial DNA synthesis could enable AIM2 inflammasome activation and induce the hepatocyte pyroptosis, thereby exacerbating NAFLD.
Background: Recent studies have emphasized determining the ability of microRNAs (miRNAs) as crucial regulators in the occurrence and development of pancreatic cancer (PC), which continues to be one of the deadliest malignancies with few effective therapies. The study aimed to investigate the functional role of miR-135b and its associated mechanism to unravel the biological characteristics of tumor growth in pancreatic cancer stem cells (PCSCs). Methods: Microarray analyses were initially performed to identify the PC-related miRNAs and genes. The expression of miR-135b and PCSC markers in PC tissues and cells was determined by RT-qPCR and western blot analysis, respectively. The potential gene (JADE-1) that could bind to miR-135b was confirmed by the dual-luciferase reporter assay. To investigate the tumorigenicity, migration, invasion, and stemness of PC cells, several gain-of-function and loss-offunction genetic experiments were conducted. Finally, tumor formation in nude mice was conducted to confirm the results in vivo. Results: miR-135b was highly-expressed in PC tissues and PCSCs, which was identified to specifically target JADE-1. The overexpression of miR-135b promoted proliferation, migration, and invasion of PCSC, inhibited cell apoptosis and increased the expression of stemness-related factors (Sox-2, Oct-4, Nanog, Aldh1, and Slug). Moreover, miR-135b could promote the expression of phosphorylated AKT and phosphorylated mTOR in the AKT/mTOR pathway. Additionally, miR-135b overexpression accelerated tumor growth in nude mice. Conclusions: Taken together, the silencing of miR-135b promotes the JADE-1 expression, which inactivates the AKT/mTOR pathway and ultimately results in inhibition of self-renewal and tumor growth of PCSCs. Hence, this study contributes to understanding the role of miR-135 in PCSCs and its underlying molecular mechanisms to aid in the development of effective PC therapeutics.
Backround:
Pancreatic ductal adenocarcinoma (PDAC) is the most common and deadly cancer. Surgical resection is the only possible cure for pancreatic cancer but often has a poor prognosis, and the role of adjuvant therapy is urgently explored.
Methods:
MicroRNAs (miRNAs) play very important role in tumorigenesis by regulating the target genes. In this study, we identified miR-320b lower-expressed in human pancreatic cancer tissues but relatively higher-expressed in the adjacent nontumor tissues.
Results:
Consistently,the expression of miR-320b in different pancreatic cancer cell lines was significantly lower than the normal pancreatic cells. In order to identify the effects of miR-320b on cell growth, we overexpressed miR-320b in PANC-1 and FG pancreatic cancer cell lines, CCK8 and BrdU incorporation assay results showed that miR-320b inhibited cell proliferation.
Discussion:
We next predicted miR-20b targeted FOXM1(Forkhead box protein M1)and identified the negative relationship between miR-320b and FOXM1.We also demonstrated that elevated miR-320b expression inhibited tumor growth in vivo.
Conclusion:
All of these results showed that miR-320b suppressed pancreatic cancer cells proliferation by targeting FOXM1, which might provide a new diagnostic marker for pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.