Arrested alveolar development is the main pathological characteristic of neonatal bronchopulmonary dysplasia (BPD); however, a number of studies aiming to improve alveolarization have focused on alveolar epithelial cell damage and impairment. Previously, the authors reported that the Wnt signaling plays a key role in alveolar injury and repair by regulating alveolar epithelial type II cell (AECII) proliferation and differentiation. In the present study, the authors wished to investigate whether Yes-associated protein (YAP), a transcriptional coactivator in the Hippo signaling pathway, affects AECII proliferation and differentiation via the Wnt/β-catenin pathway in BPD. It was found that YAP regulated AECII proliferation and differentiation. A decreased expression of YAP, Wnt3a and nuclear β-catenin was observed in lung tissues affected by BPD. In vitro , YAP and Wnt3a overexpression in BPD promoted AECII proliferation and differentiation into AECIs by increasing the nuclear transfer of β-catenin and vice versa. The effects of a decreased Wnt3a expression in primary AECIIs in BPD were compensated by YAP overexpression, as were the effects of Wnt3a knockdown in primary AECIIs. On the whole, the findings of the present study demonstrate that YAP and Wnt3a independently promote AECII proliferation and differentiation in experimental BPD by increasing the nuclear β-catenin levels. Therefore, Wnt3a or YAP may be candidate regulatory targets for improving the outcomes of BPD.
Non-coding RNAs have remarkable roles in acute lung injury (ALI) initiation. Nevertheless, the significance of long non-coding RNAs (lncRNAs) in ALI is still unknown. Herein, we purposed to identify potential key genes in ALI and create a competitive endogenous RNA (ceRNA) modulatory network to uncover possible molecular mechanisms that affect lung injury. We generated a lipopolysaccharide-triggered ALI mouse model, whose lung tissue was subjected to RNA sequencing, and then we conducted bioinformatics analysis to select genes showing differential expression (DE) and to build a lncRNA-miRNA (microRNA)- mRNA (messenger RNA) modulatory network. Besides, GO along with KEGG assessments were conducted to identify major biological processes and pathways, respectively, involved in ALI. Then, RT-qPCR assay was employed to verify levels of major RNAs. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and the hub genes were obtained with the Molecular Complex Detection plugin. Finally, a key ceRNA subnetwork was built from major genes and their docking sites. Overall, a total of 8,610 lncRNAs were identified in the normal and LPS groups. Based on the 308 DE lncRNAs [p-value < 0.05, |log2 (fold change) | > 1] and 3,357 DE mRNAs [p-value < 0.05, |log2 (fold change) | > 1], lncRNA-miRNA and miRNA-mRNA pairs were predicted using miRanda. The lncRNA-miRNA-mRNA network was created from 175 lncRNAs, 22 miRNAs, and 209 mRNAs in ALI. The RT-qPCR data keep in step with the RNA sequencing data. GO along with KEGG analyses illustrated that DE mRNAs in this network were mainly bound up with the inflammatory response, developmental process, cell differentiation, cell proliferation, apoptosis, and the NF-kappa B, PI3K-Akt, HIF-1, MAPK, Jak-STAT, and Notch signaling pathways. A PPI network on the basis of the 209 genes was established, and three hub genes (Nkx2-1, Tbx2, and Atf5) were obtained from the network. Additionally, a lncRNA-miRNA-hub gene subnetwork was built from 15 lncRNAs, 3 miRNAs, and 3 mRNAs. Herein, novel ideas are presented to expand our knowledge on the regulation mechanisms of lncRNA-related ceRNAs in the pathogenesis of ALI.
Background B lymphocyte activating factor (BAFF) is a growth factor regulating B lymphocytes survival and maturation. Serum BAFF levels were elevated in patients affected with autoimmune thyroid diseases (AITD), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). The aim of this study is to explore the association of expression levels of BAFF and its receptors with AITD. Methods Fifty-two GD patients, 39 Hashimoto’s thyroiditis (HT) patients and 23 healthy controls (HC) were recruited in this study. Serum BAFF levels were measured by ELISA. Expression of BAFF receptors, including BAFF receptor 3 (BR3) and transmembrane activator and calcium-modulating and cyclophilin ligand interactor (TACI), on B lymphocytes were analyzed by flowcytometry. Effects of steroids on serum BAFF levels and expression of BR3 and TACI were also observed in 10 patients with Graves’ orbitopathy (GO) receiving steroids therapy. Results Serum BAFF levels were significantly elevated from 0.93 ± 0.24 ng/ml in HC to 1.18 ± 0.33 ng/ml in GD (P = 0.0027) and 1.02 ± 0.24 ng/ml in HT (P = 0.0331). BR3 expression on peripheral B lymphocytes were elevated in GD (mean MFI: 4.52 ± 2.06 in GD vs. 3.00 ± 0.87 in HC, P = 0.0015), while TACI expression on peripheral B lymphocytes were decreased in GD without significance (mean MFI: 7.96 ± 4.06 in GD vs. 9.10 ± 3.37 in HC, P = 0.1285). Expression of BR3 and TACI was not changed significantly in HT patients. Steroids significantly suppressed serum BAFF concentrations (from 1.18 ± 0.27 ng/ml to 0.97 ± 0.10 ng/ml, P = 0.0364) and BR3 expression in GO patients (mean MFI from 6.26 ± 4.91 to 4.05 ± 1.58, P = 0.0083). Conclusions Altered expression of BAFF and its receptor may mediate the autoimmunity in GD. Restoring the normal expression profile of receptors for BAFF could be a new strategy to treat GD.
Background: B lymphocyte activating factor (BAFF) is a growth factor regulating B lymphocytes survival and maturation. Serum BAFF levels were elevated in patients affected with autoimmune thyroid diseases (AITD), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). The aim of this study is to investigate the association of expression of BAFF receptors on the peripheral blood B lymphocytes in addition to serum BAFF concentrations in patients affected with GD.Methods: Fifty-two GD patients, 39 Hashimoto’s thyroiditis (HT) patients and 23 healthy controls (HC) were recruited in this study. Serum BAFF levels and its receptors expression, including BAFF receptor 3 (BR3) and transmembrane activator and calcium-modulating and cyclophilin ligand interactor (TACI), in AITD patients were compared to those in HC. In 10 patients with Graves’ orbitopathy (GO) receiving steroids therapy, effects of steroids on serum BAFF levels and expression of BR3 and TACI were observed.Results: Serum BAFF levels were significantly elevated from 0.93 ± 0.24 ng/ml in HC to 1.18 ± 0.33 ng/ml in GD ( P =0.0027) and 1.02 ± 0.24 ng/ml in HT ( P =0.0331). BR3 expression on peripheral B lymphocytes were elevated in GD (mean MFI: 4.52 ± 2.06 in GD vs 3.00 ± 0.87 in HC, P =0.0015), while TACI expression on peripheral B lymphocytes were decreased in GD without significance (mean MFI: 7.96 ± 4.06 in GD vs 9.10 ± 3.37 in HC, P =0.1285). Expression of BR3 and TACI was not changed significantly in HT patients. Steroids significantly suppressed serum BAFF concentrations (from 1.18 ± 0.27 ng/ml to 0.97 ± 0.10 ng/ml, P =0.0364) and BR3 expression in GO patients (mean MFI from 6.26 ± 4.91 to 4.05 ± 1.58, P =0.0083). Conclusions: Altered expression of BAFF and its receptor may mediate the autoimmunity in GD. Restoring the normal expression profile of receptors for BAFF could be a new strategy to treat GD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.