Virtual reality (VR) has been widely used for training, gaming, and entertainment, and the value of VR is continually increasing as a contact‐free technology. For an immersive VR experience, measuring finger movements and providing appropriate feedback to the hand are as important as visual information, given the necessity of the hands for activities in daily life. Thus, a hand‐worn VR device with motion sensors and haptic feedback is desirable. In this paper, a multimodal sensing and feedback glove is developed with soft, stretchable, lightweight, and compact sensor and heater sheets manufactured by direct ink writing (DIW) of liquid metal, eutectic gallium‐indium (eGaIn). In the sensor sheet, ten sensors and three vibrators are embedded to measure finger movements and provide vibro‐haptic feedback. The other heater sheet provides thermo‐haptic sensation in accurate and rapid manner via model‐based feedback control even under stretched conditions. The multimodal sensing and feedback glove allows users to feel the contact status and discriminate materials with different temperature. Performance of the proposed multimodal glove is verified under VR environments including touching and pushing two blocks of different materials and grabbing a heated metal ball submerged in hot water.
Given the need for stretchable sensors, many studies have been conducted on eutectic gallium-indium, which has superior properties as a conductive ink. However, it has remained a challenge to manufacture sensors in a consistent and reproducible manner because conventional mold-based fabrication still depends highly on manual techniques. To overcome this limitation, the direct ink writing was used in this study, focusing on improving the stability of writing by exploring issues related to failure and ensuring the consistency of the microchannel by selecting appropriate process variables, including the syringe material. As a result, multiple sensors produced under the same manufacturing conditions had similar behaviors. This fabrication technique improved the accuracy of manufacturing a microchannel, and its behavior was predicted successfully by a simple mathematical model, which was confirmed by nondestructive inspections of the microchannel. In developing a one-piece glove-type sensor without an assembly process, the efficiency of the fabrication technique was also emphasized.
Soft pneumatic grippers, which are based on soft pneumatic actuators have been widely studied owing to their simple morphological structure, inherent compliance, and pliable grasp. Additionally, the integration of the soft gripper with various sensors to improve its functionality has also been extensively studied. Although the soft gripper is known to exhibit a robust grasping performance without accurate control, the grasping quality of the soft gripper has rarely been studied due to the lack of adequate embedded sensors and quality metrics of the soft gripper. Therefore, a hybrid gripper, which is a soft gripper with rigid components, was sensorized by embedding a soft force sensor and a bending sensor to evaluate the grasping quality. Furthermore, a new grasping quality metric for a soft gripper was proposed, which calculates the largest minimum wrench of a convex hull in the wrench space. The proposed grasping quality metric was experimentally verified, and a real-time program was developed to evaluate the grasping quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.