Foxtail millet is a minor but economically important crop in certain regions of the world. Millet color is often used to judge grain quality, yet the molecular determinants of millet coloration remain unclear. Here, we explored the relationship between SiCCD1 and millet coloration in yellow and white millet varieties. Carotenoid levels declined with grain maturation and were negatively correlated with SiCCD1 expression, which was significantly higher in white millet as compared to yellow millet during the color development stage. Cloning of the SiCCD1 promoter and CDS sequences from these different millet varieties revealed the presence of two additional cis-regulatory elements within the SiCCD1 promoter in white millet varieties, including an enhancer-like GC motif element associated with anoxic specific inducibility and a GCN4-motif element associated with endosperm expression. Dual-luciferase reporter assays confirmed that SiCCD1 promoter fragments containing these additional cis-acting elements derived from white millet varieties were significantly more active than those from yellow millet varieties, consistent with the observed SiCCD1 expression patterns. Further in vitro enzyme detection assays confirmed that SiCCD1 primarily targets and degrades lutein. Together, these data suggest that SiCCD1 promoter variation was a key factor associated with the observed differences in SiCCD1 expression, which in turn led to the difference in millet coloration.
IntroductionNitrogen (N) is essential for plant growth and yield production and can be taken up from soil in the form of nitrate or peptides. The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes play important roles in the uptake and transportation of these two forms of N.MethodsBioinformatic analysis was used to identify and characterize the NPF genes in Setaria. RNA-seq was employed to analyze time-series low nitrate stress response of the SiNPF genes. Yeast and Arabidopsis mutant complementation were used to test the nitrate transport ability of SiNRT1.1B1 and SiNRT1.1B2.ResultsWe identified 92 and 88 putative NPF genes from foxtail millet (Setaria italica L.) and its wild ancestor green foxtail (Setaria viridis L.), respectively. These NPF genes were divided into eight groups according to their sequence characteristics and phylogenetic relationship, with similar intron-exon structure and motifs in the same subfamily. Twenty-six tandem duplication and 13 segmental duplication events promoted the expansion of SiNPF gene family. Interestingly, we found that the tandem duplication of the SiNRT1.1B gene might contribute to low nitrogen tolerance of foxtail millet. The gene expression atlas showed that the SiNPFs were divided into two major clusters, which were mainly expressed in root and the above ground tissues, respectively. Time series transcriptomic analysis further revealed the response of these SiNPF genes to short- and long- time low nitrate stress. To provide natural variation of gene information, we carried out a haplotype analysis of these SiNPFs and identified 2,924 SNPs and 400 InDels based on the re-sequence data of 398 foxtail millet accessions. We also predicted the three-dimensional structure of the 92 SiNPFs and found that the conserved proline 492 residues were not in the substrate binding pocket. The interactions of SiNPF proteins with NO3− were analyzed using molecular docking and the pockets were then identified. We found that the SiNPFs- NO3− binding energy ranged from -3.8 to -2.7 kcal/mol.DiscussionTaken together, our study provides a comprehensive understanding of the NPF gene family in Setaria and will contribute to function dissection of these genes for crop breeding aimed at improving high nitrogen use efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.