A novel method for the preparation of structurally diverse fullerene derivatives, which relies on the use of single electron transfer (SET)-promoted photochemical reactions between fullerene C60 and α-trimethylsilylamines, has been developed. Photoirradiation of 10% EtOH-toluene solutions containing C60 and α-silylamines leads to high-yielding, regioselective formation of 1,2-adducts that arise through a pathway in which sequential SET-desilylation occurs to generate α-amino and C60 anion radical pair intermediates, which undergo C-C bond formation. Protonation of generated α-aminofullerene anions gives rise to formation of monoaddition products that possess functionalized α-aminomethyl-substituted 1,2-dihydrofullerene structures. Observations made in this effort show that the use of EtOH in the solvent mixture is critical for efficient photoproduct formation. In contrast to typical thermal and photochemical strategies devised previously for the preparation of fullerene derivatives, the new photochemical approach takes place under mild conditions and does not require the use of excess amounts of substrates. Thus, the method developed in this study could broaden the scope of fullerene chemistry by providing a simple photochemical strategy for large-scale preparation of highly substituted fullerene derivatives. Finally, the α-aminomethyl-substituted 1,2-dihydrofullerene photoadducts are observed to undergo photoinduced fragmentation reactions to produce C60 and the corresponding N-methylamines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.