Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction.
BackgroundGastric cancer is one of the most common malignant tumors. Cyclin G2 has been shown to be associated with the development of multiple types of tumors, but its underlying mechanisms in gastric tumors is not well-understood. The aim of this study is to investigate the role and the underlying mechanisms of cyclin G2 on Wnt/β-catenin signaling in gastric cancer.MethodsReal-time PCR, immunohistochemistry and in silico assay were used to determine the expression of cyclin G2 in gastric cancer. TCGA datasets were used to evaluate the association between cyclin G2 expression and the prognostic landscape of gastric cancers. The effects of ectopic and endogenous cyclin G2 on the proliferation and migration of gastric cancer cells were assessed using the MTS assay, colony formation assay, cell cycle assay, wound healing assay and transwell assay. Moreover, a xenograft model and a metastasis model of nude mice was used to determine the influence of cyclin G2 on gastric tumor growth and migration in vivo. The effects of cyclin G2 expression on Wnt/β-catenin signaling were explored using a TOPFlash luciferase reporter assay, and the molecular mechanisms involved were investigated using immunoblots assay, yeast two-hybrid screening, immunoprecipitation and Duolink in situ PLA. Ccng2−/− mice were generated to further confirm the inhibitory effect of cyclin G2 on Wnt/β-catenin signaling in vivo. Furthermore, GSK-3β inhibitors were utilized to explore the role of Wnt/β-catenin signaling in the suppression effect of cyclin G2 on gastric cancer cell proliferation and migration.ResultsWe found that cyclin G2 levels were decreased in gastric cancer tissues and were associated with tumor size, migration and poor differentiation status. Moreover, overexpression of cyclin G2 attenuated tumor growth and metastasis both in vitro and in vivo. Dpr1 was identified as a cyclin G2-interacting protein which was required for the cyclin G2-mediated inhibition of β-catenin expression. Mechanically, cyclin G2 impacted the activity of CKI to phosphorylate Dpr1, which has been proved to be a protein that acts as a suppressor of Wnt/β-catenin signaling when unphosphorylated. Furthermore, GSK-3β inhibitors abolished the cyclin G2-induced suppression of cell proliferation and migration.ConclusionsThis study demonstrates that cyclin G2 suppresses Wnt/β-catenin signaling and inhibits gastric cancer cell growth and migration through Dapper1.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0973-2) contains supplementary material, which is available to authorized users.
Photosynthesis converts solar energy into chemical energy to sustain all life on earth by providing oxygen and food, and controlling the atmospheric carbon dioxide. During this process, the water-splitting and oxygen-evolving reaction is catalyzed by photosystem II (PSII), while photosystem I (PSI) generates the reducing power for the reduction of NADP+ to NADPH. Together with their peripheral light-harvesting complexes (LHCs), photosystems function as multisubunit supercomplexes located in the thylakoid membranes of cyanobacteria, algae, and plants. Recent advances in single-particle cryo-electron microscopy (cryoEM), X-ray free electron laser (XFEL) and other techniques have revealed unprecedented structural and catalytic details concerning the two supercomplexes. Several high-resolution structures of the complexes from plants were solved, and serial time-resolved crystallography and “radiation-damage-free” femtosecond XFEL also provided important insights into the mechanism of water oxidation. Here, we review these exciting advances in the studies of the photosystem supercomplexes with an emphasis on PSII-LHCII, propose presently unresolved problems in this field, and suggest potential tendencies for future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.