Previous studies have shown that circ_0040414 is highly expressed in the blood of patients with heart failure (HF), which suggests that circ_0040414 is associated with heart failure (HF). However, the functional involvement of circ_0040414 in HF and its potential mechanism remains unclear. Consistent with previous studies, our study showed that the expression of circ_0040414 in the peripheral blood of patients with chronic heart failure (CHF) was significantly higher than that of healthy control, which indicated that circ_0040414 could be used as a diagnostic biomarker in patients with CHF. In cardiomyocytes, circ_0040414 increased the level of proapoptotic proteins Bax, cleaved‐caspase 3 and reduced the expression of antiapoptotic protein Bcl‐2. It also promoted inflammatory factors IL‐6, TNF‐α, and IL‐β, but inhibited cell proliferation. In terms of mechanism, circ_0040414 upregulated the expression of phosphatase and tensin homolog (PTEN) through sponging miR‐186‐5p to inhibit AKT signaling activity. Our study uncovered a novel role and the mechanism of circ_0040414 in controlling CHF, enriched the molecular regulatory network in CHF, and may provide a possible strategy for the treatment of CHF.
The possible role of phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt) signal pathway in the antagonist effect of carbamylated erythropoietin (CEPO) on chronic heart failure (CHF) in rats was investigated. Twenty of 120 rats were randomly selected as the control group, and the remaining rats as the model group. Rats in the model group received intraperitoneal injection of isoproterenol, those in the control group underwent intraperitoneal injection of equivalent normal saline. Rats with successful model establishment were divided into 4 groups, i.e. CHF group, CEPO group, LY294002 (LY) group and CEPO + LY group. Rats in the CEPO group underwent intraperitoneal injection of CEPO, while those in the CHF group received intraperitoneal injection of equivalent normal saline at the same time, those in the LY group received intraperitoneal injection of LY after model establishment, and those in the CEPO + LY group received the combined intraperitoneal injection of CEPO and LY simultaneously. Indicators for hemodynamics were determined using BL-410S bio-functional experiment system, including heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP) and maximal increased rate of left ventricular pressure (LVP)/maximal reduced rate of LVP (±dp/dtmax). Western blotting assay was utilized to determine the changes in activity of PI3-K/Akt signal pathway. LVSP and ±dp/dtmax in the CHF, the CEPO, the CEPO + LY and the LY groups were significantly lower than those in the control group (P<0.05); LVSP and ±dp/dtmax in the CEPO group were also elevated significantly compared with CHF, LY and CEPO + LY groups (P<0.05) with significant decreases in LVEDP and HR (P<0.05); compared with the CHF group, LVSP and ±dp/dtmax in the LY group were each significantly decreased (P<0.05), in the LY group, pAkt level was significantly lower than that in the CHF group (P<0.05). In conclusion, CEPO can generate the antagonist effect on CHF in rats through activation of PI3-K/Akt signal pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.