Epstein-Barr virus (EBV) is the pathogenic factor of numerous human tumors, yet certain of its encoded proteins have not been studied. As a first step for functional identification, we presented the construction of a library of expression constructs for most of the EBV encoded proteins and an explicit subcellular localization map of 81 proteins encoded by EBV in mammalian cells. Viral open reading frames were fused with enhanced yellow fluorescent protein (EYFP) tag in eukaryotic expression plasmid then expressed in COS-7 live cells, and protein localizations were observed by fluorescence microscopy. As results, 34.57% (28 proteins) of all proteins showed pan-nuclear or subnuclear localization, 39.51% (32 proteins) exhibitted pan-cytoplasmic or subcytoplasmic localization, and 25.93% (21 proteins) were found in both the nucleus and cytoplasm. Interestingly, most envelope proteins presented pan-cytoplasmic or membranous localization, and most capsid proteins displayed enriched or complete localization in the nucleus, indicating that the subcellular localization of specific proteins are associated with their roles during viral replication. Taken together, the subcellular localization map of EBV proteins in live cells may lay the foundation for further illustrating the functions of EBV-encoded genes in human diseases especially in its relevant tumors.
BackgroundHerpes simplex virus 1 (HSV-1) ICP22 is a multifunctional protein and important for HSV-1 replication. Pseudorabies virus (PRV) ICP22 (P-ICP22) is a homologue of HSV-1 ICP22 and is reported to be able to selectively modify the transcription of different kinetic classes of PRV genes, however, the subcellular localization, localization signal and molecular determinants for its transport to execute this function is less well understood.ResultsIn this study, by utilizing live cells fluorescent microscopy, P-ICP22 fused to enhanced yellow fluorescent protein (EYFP) gene was transient expressed in live cells and shown to exhibit a predominantly nucleus localization in the absence of other viral proteins. By transfection of a series of P-ICP22 deletion mutants fused to EYFP, a bona fide nuclear localization signal (NLS) and its key amino acids (aa) of P-ICP22 was, for the first time, determined and mapped to aa 41–60 (PASTPTPPKRGRYVVEHPEY) and aa 49–50 (KR), respectively. Besides, the P-ICP22 was demonstrated to be targeted to the nucleus via Ran-, importin α1-, and α7-mediated pathway.ConclusionsOur findings reported herein disclose the NLS and molecular mechanism for nuclear transport of P-ICP22, these results will uncover new avenues for depicting the biological roles of P-ICP22 during PRV infection.
The pseudorabies virus (PRV) UL31 protein (pUL31) is a homologue of the herpes simplex virus 1 pUL31, which is a multifunctional protein that is important for HSV-1 infection. However, little is known concerning the subcellular localization signal of PRV UL31. Here, by transfection with a series of PRV UL31 deletion mutants fused to an enhanced yellow fluorescent protein (EYFP) gene, a bipartite nuclear localization signal (NLS) and a PY motif NLS of UL31 were identified and mapped to amino acids (aa) 4 to 20 (RRRLLRRKSSAARRKTL) and aa 21 to 34 (TRAARDRYAPYFAY), respectively. Additionally, the predicted nuclear export signal (NES) was shown to be nonfunctional. Taken together, this information opens up new avenues for investigating the biological functions of UL31 during PRV infection.
This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.