Abbreviations: CCL2, CC-chemokine ligand 2; CM, conditioned medium; ER, estrogen receptor; MCP-1, monocyte chemoattractant protein 1; MR, tumor-associated macrophage from a tamoxifen-resistant tumor microenvironment; MS, tumor-associated macrophage from a tamoxifen-sensitive tumor microenvironment; PFS, progression-free survival; TAM, tumor-associated macrophage; TME, tumor microenvironment.
AbstractBreast cancer is the most prevalent malignancy among women. Although endocrine therapy is effective, the development of endocrine resistance is a major clinical challenge. The tumor microenvironment (TME) promotes tumor malignancy, and tumor-associated macrophages (TAM) within the TME play a crucial role in endocrine resistance. Herein, we aimed to elucidate the relationship between TAM and the endocrine-resistant phenotype of breast cancer. Macrophages were cultured with conditioned medium (CM) from tamoxifen-sensitive (MCF7-S) or -resistant (MCF7-R) MCF7 breast cancer cells. M2 polarization was detected by CD163 immunofluorescence. To determine the effect on endocrine resistance, MCF7 cells were cultured in the supernatant of different TAM, and then treated with tamoxifen. CC-chemokine ligand 2 (CCL2) immunohistochemistry was carried out on pathological sections from 100 patients with invasive estrogen receptor-positive breast cancer. We found that macrophages cultured in the CM of MCF7-S and MCF7-R cells were induced into TAM, with a more obvious M2 polarization in the latter. Tamoxifen resistance was increased by culture in TAM medium. TAM secreted CCL2, which increased endocrine resistance in breast cancer cells through activation of the PI3K/Akt/mTOR signaling pathway. High expression of CCL2 was correlated with infiltration of CD163+macrophages (r = 0.548, P < .001), and patients with high CCL2 expression presented shorter progression-free survival than those with low CCL2 expression (P < .05). We conclude that CCL2 secreted by TAM activates PI3K/Akt/mTOR signaling and promotes an endocrine resistance feedback loop in the TME, suggesting that CCL2 and TAM may be novel therapeutic targets for patients with endocrineresistant breast cancer.
The research aims to examine the prognostic value of the lymphocyte-to-monocyte ratio (LMR), neutrophil-to- lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in diffuse large B-cell lymphoma (DLBCL). The relation of these hematologic indicators to poor antitumor immunity and prognosis must be investigated. Clinicopathologic data and survival information of 355 patients with DLBCL was retrospectively analyzed. Univariate analysis revealed that lower LMR (<2.71), higher NLR (≥2.81), CD163+ M2 tumor-associated macrophages (TAM) content ≥9.5% and programmed cell death 1 (PD-1)+ tumor-infiltrating lymphocytes (TILs) content < 4.5 cells per high power field(HPF) were significantly related to unfavorable overall survival (OS) and progression free survival (PFS). When considering the prognostic indexes of IPI, multivariate analysis confirmed that LMR of <2.71 and CD163+ M2 TAM content ≥9.5% significantly affected the prognosis of DLBCL. Spearman correlation test showed LMR was negatively correlated with CD163+ M2 TAM content. However, there were no correlation was found between LMR and PD-1+ TIL as well as between NLR and PD-1+ TIL content. These results indicated that decreased LMR lead to a weak anti-tumor immunity and could be used as a bad prognosis biomarker of DLBCL.
Endocrine therapy is the standard treatment for estrogen receptor (ER)-positive breast cancer, but tumors eventually develop resistance. However, endocrine therapy resistance mechanisms mediated through interactions between breast cancer cells and tumor-associated macrophages (TAMs) are still unclear. Here, we characterized sodium/glucose cotransporter 1 (SGLT1) overexpression drives the highly glycolytic phenotype of tamoxifen-resistant breast cancer cells where enhanced lactic acid secretion promotes M2-like TAM polarization via the hypoxia-inducible factor-1α/signal transducer and activator of transcription-3 pathway. In turn, M2-like TAMs activate breast cancer cells through EGFR/PI3K/Akt signaling, providing feedback to upregulate SGLT1 and promote tamoxifen resistance and accelerate tumor growth in vitro and in vivo. Higher expression of SGLT1 and CD163+ TAMs was associated with endocrine-resistant ER-positive breast cancers. Our study identifies a novel vicious cycle of metabolic reprogramming, M2-like TAM polarization, and endocrine therapy resistance, which involves SGLT1, proposing SGLT1 as a therapeutic target to overcome endocrine therapy resistance in breast cancer.
Differential interference contrast (DIC) microscopy allows high-contrast, low-phototoxicity, and label-free imaging of transparent biological objects, and has been applied in the field of cellular morphology, cell segmentation, particle tracking, optical measurement and others. Commercial DIC microscopy based on Nomarski or Wollaston prism resorts to the interference of two polarized waves with a lateral differential offset (shear) and axial phase shift (bias). However, the shear generated by these prisms is limited to the rectilinear direction, unfortunately resulting in anisotropic contrast imaging. Here we propose an ultracompact metasurface-assisted isotropic DIC (i-DIC) microscopy based on a grand original pattern of radial shear interferometry, that converts the rectilinear shear into rotationally symmetric along radial direction, enabling single-shot isotropic imaging capabilities. The i-DIC presents a complementary fusion of typical meta-optics, traditional microscopes and integrated optical system, and showcases the promising and synergetic advancements in edge detection, particle motion tracking, and label-free cellular imaging.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.