For the extremely small size and low signal‐to‐clutter ratio, target detection in infrared images is still a considerable challenge. Specifically, it is very difficult to detect the point targets because there is no texture and shape information can be used. A target‐oriented shallow‐deep feature‐based detection algorithm is proposed, opening up a promising direction for convolutional neural network‐based infrared dim small target detection algorithms. To ensure that small target instances can be used correctly for networks, the effective small anchor is designed according to the shallow layer of ResNet50. To determine whether a detection result belongs to the target, the authors depend on whether the detection centre is included in the ground truth area, rather than on the Intersection Over Union overlap rate, which avoids misjudging the detection result. In this way, small targets can be trained and detected correctly through ResNet50. More importantly, the authors demonstrate that spatially finer shallow features are crucial for small target detection and that semantically stronger deep features are helpful for improving detection probability. Experimental results on simulation data sets and real data sets show that the proposed algorithm can detect the point target when the local signal‐to‐clutter ratio is approximately 1.3, displaying infinite advantage and great potentiality.
The detection and tracking of small targets under low signal-to-clutter ratio (SCR) has been a challenging task for infrared search and track (IRST) systems. Track-before-detect (TBD) is a widely-known algorithm which can solve this problem. However, huge computation costs and storage requirements limit its application. To address these issues, a dynamic programming (DP) and multiple hypothesis testing (MHT)-based infrared dim point target detection algorithm (DP–MHT–TBD) is proposed. It consists of three parts. (1) For each pixel in current frame, the second power optimal merit function-based DP is designed and performed in eight search areas to find the target search area that contains the real target trajectory. (2) In the target search area, the parallel MHT model is designed to save the tree-structured trajectory space, and a two-stage strategy is designed to mitigate the contradiction between the redundant trajectories and the requirements of more trajectories under low SCR. After constant false alarm segmentation of the energy accumulation map, the preliminary candidate points can be obtained. (3) The target tracking method is designed to eliminate false alarms. In this work, an efficient second power optimal merit function-based DP is designed to find the target search area for each pixel, which greatly reduces the trajectory search space. A two-stage MHT model, in which pruning for the tree-structured trajectory space is avoided and all trajectories can be processed in parallel, is designed to further reduce the hypothesis space exponentially. This model greatly reduces computational complexity and saves storage space, improving the engineering application of the TBD method. The DP–MHT–TBD not only takes advantage of the small computation amount of DP and high accuracy of an exhaustive search but also utilizes a novel structure. It can detect a single infrared point target when the SCR is 1.5 with detection probability above 90% and a false alarm rate below 0.01%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.