Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 in the early phase of infection. A higher titer of Ab was independently associated with a worse clinical classification. Abstract BackgroundThe novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patient remains largely unknown, and the clinical values of antibody testing have not been fully demonstrated. MethodsA total of 173 patients with SARS-CoV-2 infection were enrolled. Their serial plasma samples (n=535) collected during the hospitalization were tested for total antibodies (Ab), IgM and IgG against SARS-CoV-2. The dynamics of antibodies with the disease progress was analyzed. ResultsAmong 173 patients, the seroconversion rate for Ab, IgM and IgG was 93.1%, 82.7% and 64.7%, respectively. The reason for the negative antibody findings in 12 patients might due to the lack of blood samples at the later stage of illness. The median seroconversion time for Ab, IgM and then IgG were day-11, day-12 and day-14, separately. The presence of antibodies was <40% among patients within 1-week since onset, and rapidly increased to 100.0% (Ab), 94.3% (IgM) and 79.8% (IgG) since day-15 after onset. In contrast, RNA detectability decreased from 66.7% (58/87) in samples collected before day-7 to 45.5% (25/55) during day 15-39. Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 (p<0.001), even in early phase of 1-week since onset (p=0.007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (p=0.006). ConclusionsThe antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.
The accumulation and extrusion of Ca 2+ in the pre-and postsynaptic compartments play a critical role in initiating plastic changes in biological synapses. To emulate this fundamental process in electronic devices, we developed diffusive Ag-in-oxide memristors with a temporal response during and after stimulation similar to that of the synaptic Ca 2+ dynamics. In situ high-resolution transmission electron microscopy and nanoparticle dynamics simulations both demonstrate that Ag atoms disperse under electrical bias and regroup spontaneously under zero bias because of interfacial energy 2 minimization, closely resembling synaptic influx and extrusion of Ca 2+ , respectively.The diffusive memristor and its dynamics enable a direct emulation of both short-and long-term plasticity of biological synapses and represent a major advancement in hardware implementation of neuromorphic functionalities.CMOS circuits have been employed to mimic synaptic Ca 2+ dynamics, but three-terminal devices bear limited resemblance to bio-counterparts at the mechanism level and require significant numbers and complex circuits to simulate synaptic behavior [1][2][3] . A substantial reduction in footprint, complexity and energy consumption can be achieved by building a two-terminal circuit element, such as a memristor directly incorporating Ca 2+ -like dynamics.Various types of memristors based on ionic drift (drift-type memristor) 4-8 have recently been utilized for this purpose in neuromorphic architectures [9][10][11][12][13][14][15] . Although qualitative synaptic functionality has been demonstrated, the fast switching and non-volatility of drift memristors optimized for memory applications do not faithfully replicate the nature of plasticity. Similar issues also exist in MOS-based memristor emulators [16][17][18] , although they are capable of simulating a variety of synaptic functions including spike-timing-dependent plasticity (STDP). Recently, Lu's group adopted second-order drift memristors to approximate the Ca 2+ dynamics of chemical synapses by utilizing thermal dissipation 19 or mobility decay 20 , which successfully demonstrated STDP with non-overlapping spikes and other synaptic functions, representing a significant step towards bio-realistic synaptic devices. This approach features repeatability and simplicity, but the significant differences of the dynamical response from actual synapses limit the fidelity and variety of desired synaptic functions. A device with similar physical behavior as the biological Ca 2+ dynamics would enable improved emulation of synaptic function and broad applications to neuromorphic computing. Here we report such an emulator, which is a memristor based on metal atom 3 diffusion and spontaneous nanoparticle formation, as determined by in situ high-resolution transmission electron microscopy (HRTEM) and nanoparticle dynamics simulations. The dynamical properties of the diffusive memristors were confirmed to be functionally equivalent to Ca 2+ in bio-synapses, and their operating characteri...
BackgroundThe novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patient remains largely unknown, and the clinical values of antibody testing have not been fully demonstrated. MethodsA total of 173 patients with confirmed SARS-CoV-2 infection were enrolled. Their serial plasma samples (n = 535) collected during the hospitalization period were tested for total antibodies (Ab), IgM and IgG against SARS-CoV-2 using immunoassays. The dynamics of antibodies with the progress and severity of disease was analyzed. ResultsAmong 173 patients, the seroconversion rate for Ab, IgM and IgG was 93.1% (161/173), 82.7% (143/173) and 64.7% (112/173), respectively. Twelve patients who had not seroconverted were those only blood samples at the early stage of illness were collected.The seroconversion sequentially appeared for Ab, IgM and then IgG, with a median time of 11, 12 and 14 days, respectively. The presence of antibodies was < 40% among patients in the first 7 days of illness, and then rapidly increased to 100.0%, 94.3% and 79.8% for Ab, IgM and IgG respectively since day 15 after onset. In contrast, the positive rate of RNA decreased from 66.7% (58/87) in samples collected before day 7 to 45.5% (25/55) during days 15 to 39. Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 patients (p < 0.001), even in early phase of 1-week since onset (p = 0.007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (p = 0.006). ConclusionsThe antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.
All-inorganic perovskite nanocrystals (NCs) have emerged as a new generation of low-cost semiconducting luminescent system for optoelectronic applications. The room-temperature photoluminescence quantum yields (PLQYs) of these NCs in the green and red spectral range approach unity. However, their PLQYs in the violet are much lower, and an insightful understanding of such poor performance remains missing. We report a general strategy for the synthesis of all-inorganic violet-emitting perovskite NCs with near-unity PLQYs through engineering local order of the lattice by nickel ion doping. A broad range of experimental characterizations, including steady-state and time-resolved luminescence spectroscopy, X-ray absorption spectra, and magic angle spinning nuclear magnetic resonance spectra, reveal that the low PLQY in undoped NCs is associated with short-range disorder of the lattice induced by intrinsic defects such as halide vacancies and that Ni doping can substantially eliminate these defects and result in increased short-range order of the lattice. Density functional theory calculations reveal that Ni doping of perovskites causes an increase of defect formation energy and does not introduce deep trap states in the band gap, which is suggested to be the main reason for the improved local structural order and near-unity PLQY. Our ability to obtain violet-emitting perovskite NCs with near-perfect properties opens the door for a range of applications in violet-emitting perovskite-based devices such as light-emitting diodes, single-photon sources, lasers, and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.