All-inorganic perovskite nanocrystals (NCs) have emerged as a new generation of low-cost semiconducting luminescent system for optoelectronic applications. The room-temperature photoluminescence quantum yields (PLQYs) of these NCs in the green and red spectral range approach unity. However, their PLQYs in the violet are much lower, and an insightful understanding of such poor performance remains missing. We report a general strategy for the synthesis of all-inorganic violet-emitting perovskite NCs with near-unity PLQYs through engineering local order of the lattice by nickel ion doping. A broad range of experimental characterizations, including steady-state and time-resolved luminescence spectroscopy, X-ray absorption spectra, and magic angle spinning nuclear magnetic resonance spectra, reveal that the low PLQY in undoped NCs is associated with short-range disorder of the lattice induced by intrinsic defects such as halide vacancies and that Ni doping can substantially eliminate these defects and result in increased short-range order of the lattice. Density functional theory calculations reveal that Ni doping of perovskites causes an increase of defect formation energy and does not introduce deep trap states in the band gap, which is suggested to be the main reason for the improved local structural order and near-unity PLQY. Our ability to obtain violet-emitting perovskite NCs with near-perfect properties opens the door for a range of applications in violet-emitting perovskite-based devices such as light-emitting diodes, single-photon sources, lasers, and beyond.
By utilizing RNA nanotechnology, we engineered both therapeutic siRNA and a receptor-binding RNA aptamer into individual pRNAs of phi29's motor. The RNA building block harboring siRNA or other therapeutic molecules was fabricated subsequently into a trimer through the interaction of engineered right and left interlocking RNA loops. The incubation of the protein-free nanoscale particles containing the receptor-binding aptamer or other ligands resulted in the binding and coentry of the trivalent therapeutic particles into cells, subsequently modulating the apoptosis of cancer cells and leukemia model lymphocytes in cell culture and animal trials. The use of such antigenicityfree 20-40 nm particles holds promise for the repeated long-term treatment of chronic diseases.
The application of small RNA in therapy has been hindered by the lack of an efficient and safe delivery system to target specific cells. Packaging RNA (pRNA), part of the DNA-packaging motor of bacteriophage phi29(φ29), was manipulated by RNA nanotechnology to make chimeric RNAs that form dimers via interlocking right-and left-hand loops. Fusing pRNA with receptor-binding RNA aptamer, folate, small interfering RNA (siRNA), ribozyme, or another chemical group did not disturb dimer formation or interfere with the function of the inserted moieties. Incubation of cancer cells with the pRNA dimer, one subunit of which harbored the receptor-binding moiety and the other harboring the gene-silencing molecule, resulted in their binding and entry into the cells, and subsequent silencing of anti/proapoptotic genes. The chimeric pRNA complex was found to be processed into functional double-stranded siRNA by Dicer (RNA-specific endonuclease). Animal trials confirmed the suppression of tumorigenicity of cancer cells by ex vivo delivery. It has been reported [Shu, D., Moll, W.-D., Deng, Z., Mao, C., and Guo, P. (2004). Nano Lett. 4:1717Lett. 4: -1724 that RNA can be used as a building block for bottom-up assembly in nanotechnology. The assembly of protein-free 25-nm RNA nanoparticles reported here will allow for repeated long-term administration and avoid the problems of short retention time of small molecules and the difficulties in the delivery of particles larger than 100 nm. OVERVIEW SUMMARYThe successful use of small RNA for therapeutic purposes requires a safe and efficient delivery system capable of targeting specific cells. φ29 motor RNA (pRNA) was manipulated to produce chimeric RNAs that formed dimers through connection by right-and left-hand loops. Fusion of the pRNA with a variety of therapeutic and chemical compounds did not impede the formation of dimers or interfere with moiety function. Incubation of cells with dimer, one subunit of which carried a gene-silencing molecule and the other a receptor-binding moiety, resulted in successful binding, entry, and silencing of apoptotic genes. Animal trials further confirmed suppression of the tumorigenicity of cancer cells by ex vivo delivery. The dimeric RNA chimera was processed into double-stranded small interfering RNA (siRNA) by Dicer. These protein-free 25-nm nanoparticles will allow for repeated and long-term administration escaping immunoresponse and avoid the short retention time of smaller molecules and the undeliverability of larger molecules.
RNA engineering for nanotechnology and medical applications is an exciting emerging research field. RNA has intrinsically defined features on the nanometer scale and is a particularly interesting candidate for such applications due to its amazing diversity, flexibility and versatility in structure and function. Specifically, the current use of siRNA to silence target genes involved in disease has generated much excitement in the scientific community. The intrinsic ability to sequence-specifically down-regulate gene expression in a temporally-and spatially-controlled fashion has led to heightened interest and rapid development of siRNA-based therapeutics. Though methods for gene silencing with high efficacy and specificity have been achieved in vitro, the effective delivery of nucleic acids to specific cells in vivo has been a hurdle for RNA therapeutics. This review covers different RNA-based approaches for diagnosis, prevention and treatment of human disease, with a focus on the latest developments of nonviral carriers of siRNA for delivery in vivo. The applications and challenges of siRNA therapy, as well as potential solutions to these problems, the approaches for using phi29 pRNA-based vectors as polyvalent vehicles for specific delivery of siRNA, ribozymes, drugs or other therapeutic agents to specific cells for therapy will also be addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.