This paper presents the design and implementation results of an efficient fast Fourier transform (FFT) processor for frequency-modulated continuous wave (FMCW) radar signal processing. The proposed FFT processor is designed with a memory-based FFT architecture and supports variable lengths from 64 to 4096. Moreover, it is designed with a floating-point operator to prevent the performance degradation of fixed-point operators. FMCW radar signal processing requires windowing operations to increase the target detection rate by reducing clutter side lobes, magnitude calculation operations based on the FFT results to detect the target, and accumulation operations to improve the detection performance of the target. In addition, in some applications such as the measurement of vital signs, the phase of the FFT result has to be calculated. In general, only the FFT is implemented in the hardware, and the other FMCW radar signal processing is performed in the software. The proposed FFT processor implements not only the FFT, but also windowing, accumulation, and magnitude/phase calculations in the hardware. Therefore, compared with a processor implementing only the FFT, the proposed FFT processor uses 1.69 times the hardware resources but achieves an execution time 7.32 times shorter.
The constant false-alarm rate (CFAR) algorithm is essential for detecting targets during radar signal processing. It has been improved to accurately detect targets, especially in nonhomogeneous environments, such as multitarget or clutter edge environments. For example, there are sort-based and variable index-based algorithms. However, these algorithms require large amounts of computation, making them difficult to apply in radar applications that require real-time target detection. We propose a new CFAR algorithm that determines the environment of a received signal through a new decision criterion and applies the optimal CFAR algorithms such as the modified variable index (MVI) and automatic censored cell averaging-based ordered data variability (ACCA-ODV). The Monte Carlo simulation results of the proposed CFAR algorithm showed a high detection probability of 93.8% in homogeneous and nonhomogeneous environments based on an SNR of 25 dB. In addition, this paper presents the hardware design, field-programmable gate array (FPGA)-based implementation, and verification results for the practical application of the proposed algorithm. We reduced the hardware complexity by time-sharing sum and square operations and by replacing division operations with multiplication operations when calculating decision parameters. We also developed a low-complexity and high-speed sorter architecture that performs sorting for the partial data in leading and lagging windows. As a result, the implementation used 8260 LUTs and 3823 registers and took 0.6 μs to operate. Compared with the previously proposed FPGA implementation results, it is confirmed that the complexity and operation speed of the proposed CFAR processor are very suitable for real-time implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.