Recently, human–machine interfaces (HMI) that make life convenient have been studied in many fields. In particular, a hand gesture recognition (HGR) system, which can be implemented as a wearable system, has the advantage that users can easily and intuitively control the device. Among the various sensors used in the HGR system, the surface electromyography (sEMG) sensor is independent of the acquisition environment, easy to wear, and requires a small amount of data. Focusing on these advantages, previous sEMG-based HGR systems used several sensors or complex deep-learning algorithms to achieve high classification accuracy. However, systems that use multiple sensors are bulky, and embedded platforms with complex deep-learning algorithms are difficult to implement. To overcome these limitations, we propose an HGR system using a binarized neural network (BNN), a lightweight convolutional neural network (CNN), with one dry-type sEMG sensor, which is implemented on a field-programmable gate array (FPGA). The proposed HGR system classifies nine dynamic gestures that can be useful in real life rather than static gestures that can be classified relatively easily. Raw sEMG data collected from a dynamic gesture are converted into a spectrogram with information in the time-frequency domain and transferred to the classifier. As a result, the proposed HGR system achieved 95.4% classification accuracy, with a computation time of 14.1 ms and a power consumption of 91.81 mW.
The constant false-alarm rate (CFAR) algorithm is essential for detecting targets during radar signal processing. It has been improved to accurately detect targets, especially in nonhomogeneous environments, such as multitarget or clutter edge environments. For example, there are sort-based and variable index-based algorithms. However, these algorithms require large amounts of computation, making them difficult to apply in radar applications that require real-time target detection. We propose a new CFAR algorithm that determines the environment of a received signal through a new decision criterion and applies the optimal CFAR algorithms such as the modified variable index (MVI) and automatic censored cell averaging-based ordered data variability (ACCA-ODV). The Monte Carlo simulation results of the proposed CFAR algorithm showed a high detection probability of 93.8% in homogeneous and nonhomogeneous environments based on an SNR of 25 dB. In addition, this paper presents the hardware design, field-programmable gate array (FPGA)-based implementation, and verification results for the practical application of the proposed algorithm. We reduced the hardware complexity by time-sharing sum and square operations and by replacing division operations with multiplication operations when calculating decision parameters. We also developed a low-complexity and high-speed sorter architecture that performs sorting for the partial data in leading and lagging windows. As a result, the implementation used 8260 LUTs and 3823 registers and took 0.6 μs to operate. Compared with the previously proposed FPGA implementation results, it is confirmed that the complexity and operation speed of the proposed CFAR processor are very suitable for real-time implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.