Plants grow better when they are supplied with a combination of ammonium (NH4+) and nitrate (NO3−) than when either one is supplied as the sole N (nitrogen) source. However, the effects of N forms on N metabolism and major N assimilation enzymes in different plants, especially vegetables, are largely neglected. This study was conducted on two plants with distinct NH4+ tolerances to compare the responses of two popular leafy vegetables, Korean cabbage (Brassica campestris L.) ‘Ssamchu’ and lettuce (Lactuca sativa L.) ‘Caesar green’, to the N source. To this end, plant growth and quality, photosynthesis, carbohydrate, N contents (in the forms of NO3−, NO2−, NH4+, total protein), and key N assimilation-related enzyme (NR, NIR, GS, GDH) activities were investigated. When plants were subjected to one of three NH4+:NO3− regimes, 0:100, 50:50, or 100:0, lettuce was relatively more tolerant while cabbage was extremely sensitive to high NH4+. Both plants benefited more from being grown with 50:50 NH4+:NO3−, as evidenced by the best growth performance, ameliorated photosynthesis, and enriched carbohydrate (C) stock content. In addition, as compared to cabbage, the GS and GDH activities were reinforced in lettuce in response to an increasing external NH4+ level, resulting in low NH4+ accumulation. Our findings suggested that boosting or maintaining high GS and GDH activities is an important strategy for the ammonium tolerance in vegetables.
Peony is an important ornamental plant and has become increasingly popular for cut flower cultivation. However, a short vase life and frequent poor vase quality severely restrict its market value. The study described herein was conducted to investigate the effects of silicon application on the vase life and quality of two cut peony (Paeonia lactiflora Pall.) cultivars, ‘Taebaek’ and ‘Euiseong’. For pre- and/or postharvest silicon application, four experimental groups based on treatments were designed. With silicon treatment, the relevant growth attributes, including the shoot and leaf lengths, stem and bud diameters as well as the leaf width were all remarkably increased. In the postharvest storage, the addition of silicon to the holding solution in the vase was able to significantly extend vase life, delay fresh weight decrease, and improve vase quality, as characterized by the antioxidant enzyme activities and mechanical stem strength. Taken together, silicon application, regardless of the approach, was able to effectively prolong the vase life and enhance the quality of cut peony flowers.
The Kunitz trypsin inhibitor (KTi) in soybean has several polymorphic types that are controlled by multiple alleles, which behave in a co-dominant fashion. Of these, Tia and Tib, which differ by nine amino acids, are the predominant types. In order to develop a single nucleotide amplified polymorphism (SNAP) marker for the classification of the predominant KTi types, Tia and Tib, and evaluate KTi activities by differing KTi type total 451 soybean mutant lines (M(12)-M(16) generation) were incorporated in this study. Among 451 soybean mutants, 144 and 13 mutant lines showed decreased and increased trypsin inhibitor activity when compared with the original cultivars, respectively. To identify the KTi type, we designed a SNAP marker. Among 451 mutant lines from 12 soybean cultivars and landraces, 8 mutant lines derived from cvs. Baekwoon, Paldal and Suwon115 showed a change in KTi type when compared with the original cultivars using the SNAP marker. Five mutant lines in Suwon115 changed from Tib to Tia, while two mutant lines derived from cv. Baekwoon and one mutant line derived from cv. Paldal were changed from Tia to Tib. These changes of KTi types were confirmed by sequencing of the KTi genes and non-denaturing polyacrylamide gel electrophoresis of the KTi proteins. To identify the effect of KTi activity based on the change in KTi type, we measured the KTi activity using the three cultivars and eight mutant lines that showed changes in KTi type. Two mutant lines (BW-1 and 7-2) derived from cv. Baekwoon and one mutant line (PD-5-10) from cv. Paldal that changed from Tia to Tib showed lower activity than the original cultivar. In cv. Suwon115, five mutant lines that changed from Tib to Tia showed higher activity than the original cultivar. These results indicate that the designed SNAP marker was capable of identifying the KTi type and that Tia activity was higher than Tib activity in soybean.
Ammonium is a paradoxical nutrient because it is more metabolically efficient than nitrate, but also causes plant stresses in excess, i.e., ammonium toxicity. Current knowledge indicates that ammonium tolerance is species-specific and related to the ammonium assimilation enzyme activities. However, the mechanisms underlying the ammonium tolerance in bedding plants remain to be elucidated. The study described herein explores the primary traits contributing to the ammonium tolerance in three bedding plants. Three NH4+:NO3− ratios (0:100, 50:50, 100:0) were supplied to salvia, petunia, and ageratum. We determined that they possessed distinct ammonium tolerances: salvia and petunia were, respectively, extremely sensitive and moderately sensitive to high NH4+ concentrations, whereas ageratum was tolerant to NH4+, as characterized by the responses of the shoot and root growth, photosynthetic capacity, and nitrogen (amino acid and soluble protein)-carbohydrate (starch) distributions. An analysis of the major nitrogen assimilation enzymes showed that the root GS (glutamine synthetase) and NADH-GDH (glutamate dehydrogenase) activities in ageratum exhibited a dose-response relationship (reinforced by 25.24% and 6.64%, respectively) as the NH4+ level was raised from 50% to 100%; but both enzyme activities were significantly diminished in salvia. Besides, negligible changes of GS activities monitored in leaves revealed that only the root GS and NADH-GDH underpin the ammonium tolerances of the three bedding plants.
The photoreceptor-mediated photoperiodic sensitivity determines the obligate short-day flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) when the night length is longer than a critical minimum, otherwise, flowering is effectively inhibited. The reversal of this inhibition by subsequent exposure to a short period of supplemental (S) or night-interruptional (NI) blue (B) light (S-B; NI-B) indicates the involvement of B light-received photoreceptors in the flowering response. Flowering is mainly powered by sugars produced through photosynthetic carbon assimilation. Thus, the light intensity can be involved in flowering regulation by affecting photosynthesis. Here, it is elucidated that the intensity of S-B or NI-B in photoperiodic flowering regulation of chrysanthemums by applying 4-h of S-B or NI-B with either 0, 10, 20, 30, or 40 mmol•m −2 •s −1 photosynthetic photon flux density (PPFD) in a 10-h short-day (SD10) [SD10 + 4B or + NI-4B (0, 10, 20, 30, or 40)] or 13-h long-day (LD13) condition [LD13 + 4B or + NI-4B (0, 10, 20, 30, or 40)] provided by 300 ± 5 mmol•m −2 •s −1 PPFD white (W) LEDs. After 60 days of photoperiodic light treatments other than the LD13 and LD13 + NI-4B (40), flowering with varying degrees was observed, although the SD10 gave the earliest flowering. And the LD13 + 4B (30) produced the greatest number of flowers. The flowering pattern in response to the intensity of S-B or NI-B was consistent as it was gradually promoted from 10 to 30 mmol m −2 s −1 PPFD and inhibited by 40B regardless of the photoperiod. In SD conditions, the same intensity of S-B and NI-B did not significantly affect flowering, while differential flowering inhibition was observed with any intensity of NI-B in LDs. Furthermore, the 30 mmol•m −2 •s −1 PPFD of S-B or NI-B up-regulated the expression of floral meristem identity or florigen genes, as well as the chlorophyll content, photosynthetic efficiency, Frontiers in Plant Science frontiersin.org 01
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.