Tributyltin (TBT) is a biocide extremely toxic to a wide range of organisms, which has been used for decades for industrial purposes. Fucoxanthin is a natural carotenoid that is isolated from seaweed, and fucoxanthinol is a major primary metabolite of fucoxanthin. Although fucoxanthin and fucoxanthinol have been reported to possess anti-oxidant activities in vitro, little is known as to whether they protect against TBT-induced oxidative stress in cultured cells. In the present study, the protective effect of fucoxanthin and fucoxanthinol against oxidative stress induced by TBT was investigated. The data showed that incubation of HepG2 cells with 0.2 μM TBT significantly increased cell apoptosis, whereas treatment with fucoxanthin or fucoxanthinol (3 μM) significantly recovered cell viability. In addition, fucoxanthinol treatment significantly decreased the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) in HepG2 cells incubated with TBT. Moreover, fucoxanthin and fucoxanthinol markedly increased the expression level of Bcl-2/Bax. These results demonstrated that both fucoxanthin and fucoxanthinol effectively prevented cytotoxicity in HepG2 cells treated with TBT, and the protective effect was likely associated with decreased intracellular ROS and MDA and increased Bcl-2/Bax levels.
Ocean acidification (OA) and crude oil pollution have been highlighted as some of the most pervasive anthropogenic influences on the ocean.In marine teleosts, early life-history stages are particularly vulnerable to disturbance by CO-driven acidification as they lack pH-mediated intracellular regulation. Embryos exposed to trace levels of crude oil constituents dissolved in water exhibit a common syndrome of developmental abnormalities. So far, little is known about the combined effects of OA and crude oil on the early life history of marine fish. Eggs and larvae of the marine medaka (Oryzias melastigma) were treated with CO (1080 μatm atmospheric CO), the water-soluble fraction (WSF) of crude oil (500 μg/L) and a CO (1080 μatm atmospheric CO)/WSF (500 μg/L) mixture within 4 h after oviposition. Isolated and combined OA/WSF had no detectable effect on embryonic duration, egg survival rate and size at hatching. Histopathological anomalies of tissue and lipid metabolic disorder were significant when CO or WSF was given alone at 30 days of age. Combination of CO and WSF enhanced their toxicity compared to their separate administration. Since the early life-history stage of marine fish is thought to be impacted more heavily by increasing CO partial pressure (pCO) levels and crude oil pollution, OA and crude oil pollution have the potential to act as an additional source of natural mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.