The atomistic change of C( sp)-H to C( sp)-O can have a profound impact on the physical and biological properties of small molecules. Traditionally, chemical synthesis has relied on pre-existing functionality to install new functionality, and directed approaches to C-H oxidation are an extension of this logic. The impact of developing undirected C-H oxidation reactions with controlled site-selectivity is that scientists gain the ability to diversify complex structures at sites remote from existing functionality, without having to carry out individual de novo syntheses. This Perspective offers a historical view of why, as recently as 2007, it was thought that the differences between aliphatic C-H bonds of the same bond type (for example, 2° aliphatic) were not large enough to distinguish them preparatively with small-molecule catalysis in the absence of directing groups or molecular recognition elements. We give an account of the discovery of Fe(PDP)-catalyzed non-directed aliphatic C-H hydroxylations and how the electronic, steric, and stereoelectronic rules for predicting site-selectivity that emerged have affected a shift in how the chemical community views the reactivity among these bonds. The discovery that site-selectivity could be altered by tuning the catalyst [i.e., Fe(CF-PDP)] with no changes to the substrate or reaction now gives scientists the ability to exert control on the site of oxidation on a range of functionally and topologically diverse compounds. Collectively, these findings have made possible the emerging area of late-stage C-H functionalizations for streamlining synthesis and derivatizing complex molecules.
C—H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp3)—H bonds while displaying chemoselectivity (i.e. tolerance of more oxidizable functionality) remains an unsolved problem. Herein, we describe a catalyst, manganese tert-butylphthalocyanine [Mn(tBuPc)], that is an outlier to the reactivity-selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp3)—H bonds intramolecularly, while displaying excellent chemoselectivity in the presence of π-functionality. Mechanistic studies indicate that [Mn(tBuPc)] transfers bound nitrenes to C(sp3)—H bonds via a pathway that lies between concerted C—H insertion, observed with reactive noble metals (e.g. rhodium), and stepwise radical C—H abstraction/rebound, observed with chemoselective base metals (e.g. iron). Rather than achieving a blending of effects, [Mn(tBuPc)] aminates even 1° aliphatic and propargylic C—H bonds, reactivity and selectivity unusual for previously known catalysts.
Despite significant progress in the development of site-selective aliphatic C–H oxidations over the past decade, the ability to oxidize strong methylene C–H bonds in the presence of more oxidatively labile aromatic functionalities remains a major unsolved problem. Such chemoselective reactivity is highly desirable for enabling late stage oxidative derivatizations of pharmaceuticals and medicinally important natural products that often contain such functionality. Herein we report a simple manganese small molecule catalyst Mn(CF 3 –PDP) system that achieves such chemoselectivity via an unexpected synergy of catalyst design and acid additive. Preparative remote methylene oxidation is obtained in 50 aromatic compounds housing medicinally relevant halogen, oxygen, heterocyclic, and biaryl moieties. Late stage methylene oxidation is demonstrated on four drug scaffolds, including the ethinylestradiol scaffold where other non-directed C–H oxidants that tolerate aromatic groups effect oxidation at only activated tertiary benzylic sites. Rapid generation of a known metabolite (piragliatin) from an advanced intermediate is demonstrated.
Aromatic and heterocyclic functionality are ubiquitous in pharmaceuticals. Herein, we disclose a new Mn(PDP) catalyst system using chloroacetic acid additive capable of chemoselectively oxidizing remote tertiary C(sp 3 )À H bonds in the presence of a broad range of aromatic and heterocyclic moieties. Although catalyst loadings can be lowered to 0.1 mol% under a Mn(PDP)/acetic acid system for aromatic and non-basic nitrogen heterocycle substrates, the Mn(PDP)/chloroacetic acid system generally affords 10-15% higher isolated yields on these substrates and is uniquely effective for remote C(sp 3 )À H hydroxylations in substrates housing basic nitrogen heterocycles. The demonstrated ability to perform Mn(PDP)/chloroacetic acid C(sp 3 )À H oxidations in pharmaceutically relevant complex molecules on multi-gram scales will facilitate drug discovery processes via late-stage functionalization.
A novel manganese C‐H amination catalyst is easily synthesized in one step from commercially available materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.