We fabricated a thin-film composite (TFC) forward osmosis (FO) membrane with an ultrathin spray-coated carbon nanotube (CNT) interlayer. The impact of the CNT interlayer on the polyamide (PA) layer structural properties and transport behavior in FO were investigated. Results indicate that the CNT interlayer provides an interface which enables the formation of a highly permeable and selective PA layer with a large effective surface area for water transport, while inhibiting the formation of a flowerlike PA structure inside the substrate pores. The TFC-FO membrane with the CNT interlayer exhibited a much greater water flux than previously reported for FO membranes, while maintaining comparable salt rejection. Specifically, a membrane perm-selectivity or ratio of water (A) to salt permeability coefficients (B) (A/B value) of 39 bar −1 was achieved for the TFC-PA-CNT membrane. Implications of the results for the fabrication of highperformance TFC-FO membranes are further discussed.
The aim of this study was to investigate brain structural alterations in adult immigrants who adapted to high altitude (HA). Voxel-based morphometry analysis of gray matter (GM) volumes, surface-based analysis of cortical thickness, and Tract-Based Spatial Statistics analysis of white matter fractional anisotropy (FA) based on MRI images were conducted on 16 adults (20–22 years) who immigrated to the Qinghai-Tibet Plateau (2300–4400 m) for 2 years. They had no chronic mountain sickness. Control group consisted of 16 matched sea level subjects. A battery of neuropsychological tests was also conducted. HA immigrants showed significantly decreased GM volumes in the right postcentral gyrus and right superior frontal gyrus, and increased GM volumes in the right middle frontal gyrus, right parahippocampal gyrus, right inferior and middle temporal gyri, bilateral inferior ventral pons, and right cerebellum crus1. While there was some divergence in the left hemisphere, surface-based patterns of GM changes in the right hemisphere resembled those seen for VBM analysis. FA changes were observed in multiple WM tracts. HA immigrants showed significant impairment in pulmonary function, increase in reaction time, and deficit in mental rotation. Parahippocampal and middle frontal GM volumes correlated with vital capacity. Superior frontal GM volume correlated with mental rotation and postcentral GM correlated with reaction time. Paracentral lobule and frontal FA correlated with mental rotation reaction time. There might be structural modifications occurred in the adult immigrants during adaptation to HA. The changes in GM may be related to impaired respiratory function and psychological deficits.
BackgroundStructural and functional networks can be reorganized to adjust to environmental pressures and physiologic changes in the adult brain, but such processes remain unclear in prolonged adaptation to high‐altitude (HA) hypoxia. This study aimed to characterize the interhemispheric functionally and structurally coupled modifications in the brains of adult HA immigrants.MethodsWe performed resting‐state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) in 16 adults who had immigrated to the Qinghai‐Tibet Plateau (2300–4400 m) for 2 years and in 16 age‐matched sea‐level (SL) controls. A recently validated approach of voxel‐mirrored homotopic connectivity (VMHC) was employed to examine the interhemispheric resting‐state functional connectivity. Areas showing changed VMHC in HA immigrants were selected as regions of interest for follow‐up DTI tractography analysis. The fiber parameters of fractional anisotropy and fiber length were obtained. Cognitive and physiological assessments were made and correlated with the resulting image metrics.ResultsCompared with SL controls, VMHC in the bilateral visual cortex was significantly increased in HA immigrants. The mean VMHC value extracted within the visual cortex was positively correlated with hemoglobin concentration. Moreover, the path length of the commissural fibers connecting homotopic visual areas was increased in HA immigrants, covarying positively with VMHC.ConclusionsThese observations are the first to demonstrate interhemispheric functional and structural connectivity resilience in the adult brain after prolonged HA acclimatization independent of inherited and developmental effects, and the coupled modifications in the bilateral visual cortex indicate important neural compensatory mechanisms underlying visual dysfunction in physiologically well‐acclimatized HA immigrants. The study of human central adaptation to extreme environments promotes the understanding of our brain's capacity for survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.