Polysaccharide decolorization has a major effect on polysaccharide function. In the present study, the decolorization of Rehmannia glutinosa polysaccharides (RGP) is optimized using two methods—the AB-8 macroporous resin (RGP-1) method and the H2O2 (RGP-2) method. The optimal decolorization parameters for the AB-8 macroporous resin method were as follows: temperature, 50 °C; macroporous resin addition, 8.4%; decolorization duration, 64 min; and pH, 5. Under these conditions, the overall score was 65.29 ± 3.4%. The optimal decolorization conditions for the H2O2 method were as follows: temperature, 51 °C; H2O2 addition, 9.5%; decolorization duration, 2 h; and pH, 8.6. Under these conditions, the overall score was 79.29 ± 4.8%. Two pure polysaccharides (RGP-1-A and RGP-2-A) were isolated from RGP-1 and RGP-2. Subsequently, their antioxidant and anti-inflammatory effects and mechanisms were evaluated. RGP treatment activated the Nrf2/Keap1 pathway and significantly increased the activity of antioxidant enzymes (p < 0.05). It also inhibited the expression of pro-inflammatory factors and suppressed the TLR4/NF-κB pathway (p < 0.05). RGP-1-A had a significantly better protective effect than RGP-2-A, likely owing to the sulfate and uronic groups it contains. Together, the findings indicate that RGP can act as a natural agent for the prevention of oxidation and inflammation-related diseases.
To investigate the hypothesis that APS can attenuate E. coli-induced microvascular dysfunction in chicken intestine, 60 0-day old male chickens were divided into three groups with 5 replications of 4 chicks. Chicken in the APS group were treated with 15 mg APS daily while the others were given 0 mg APS for 6 days. Then all 7-day old chicken were injected intraperitoneally by E. coli, except for the chicken in the control group. After 4 h, all chicken's intestinal samples were collected to detect gene expressions involved in inflammatory factors and adhesion molecules. Results showed that APS attenuated the signs of edema and hemorrhage in 7-day old chicken intestinal mucosa which were induced by E. coli injection. Consistently, APS significantly reduced the increasing mRNA levels of inflammatory factors such as Tumor necrosis factor-a (TNF-a), interleukin (IL)-1β and inducible nitric oxide synthase (iNOS) (p<0.05), the same results were observed in vascular adhesion molecules such as E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Moreover, we observed that APS supplementation in water suppressed significantly (p<0.05) the decline of reparative factors such as epithelial growth factor (EGF) and basic fibroblast growth factor (bFGF) in E. coli injected group. Furthermore, supplementation with APS substantially blocked (p<0.05) the increase in Toll-like receptor-4 (TLR4) and Nuclear factor (NF)-κB mRNA abundance (p=0.087) induced by E. coli infection. This study indicated that microvascular injured chicken intestine induced by E. coli would be attenuated with feeding APS, and the mechanism of repairing were probably mediated through TLR4-NF-κB signal pathways.
Chicken coccidiosis is a common and severe parasitic disease caused by infection from Eimeria spp., which affects the integrity of the intestinal mucosa. TGF-β has been shown to play an important role in the healing of intestinal mucosas, immunity, and the maintenance of bowel mucosa integrity. Very little is known about the presence of the components of TGF-β/Smads signaling pathway of chicken at different times following coccidian infection. In the present study, we measured the levels of TGF-β2, 3, 4, receptor TβRI, II, down-stream Smad 2, 3, 7 in cecum and spleen of chicken at different times after inoculation with Eimeria tenella using quantitative real-time PCR. The results showed that the TGF-β/Smads signaling pathway was not activated in cecum in the early stage of infection. However, on the 8 th day, the expression of TGF-β2, 4, down-stream protein Smad 2, 7 were significant upregulated in the spleen, which indicated that the TGF-β/Smads signaling was changed in the E. tenella infection and was differentially expressed in various tissues in the early stages of infection.
This experiment aimed to investigate whether Escherichia coli (E. coli) infection could affect the TGF-β/smads signaling pathway in the jejunal tissue of chickens. One-day-old Cobb 500 broilers were randomly divided into 2 groups and treated with intraperitoneal E. coli or broth injection. Clinical signs of the birds were assessed every day. Spleen and bursa of Fabricius of the birds, post-infection (pi), were collected to evaluate immune organ index. Jejunal tissues were collected to ascertain the expression of TGF-βs, TβRs, and Smads. The results showed that the infected birds had significantly higher index of the spleen (24hrs and 48hrs pi) compared with birds in the control group (p<0.05). The relative gene expression of TGF-β4 increased (p<0.05), while the expression of Smad7 down-regulated in the E. coli group (p<0.01). There was no significant difference in TGF-β2, TGF-β3, TβR I, TβR II, Smad2, Smad3 expression (p>0.05). In conclusion, TGF-β/Smad signaling pathway was associated with the immune response of broilers in E. coli infection and TGF-β4 was the main subtype interacting with E. coli infection.
Enterotoxigenic Escherichia coli (ETEC) infection is one of the most common bacterial causes of diarrhea in children and young farm animals. Medium-chain fatty acids (MCFAs) have been widely used for their antibacterial and immune functions. However, there is limited information regarding the role of MCFAs chelated with Zn in diarrhea induced by ETEC infection. Here, zinc laurate (ZnLa) was used to evaluate its protective effect in a mice diarrhea model induced by ETEC. A total of 45 ICR-weaned female mice were randomly assigned to marginal zinc deficiency (dZn), dZn, and ETEC infection groups (dZn+ETEC); ETEC infection was co-treated with a low, middle, or high dose of ZnLa (ZnLa LOW+ETEC, ZnLa MID+ETEC, and ZnLa HIGH+ETEC), respectively, to explore the effect and its mechanism of ZnLa on diarrhea and intestinal health of mice challenged with ETEC. To further compare the antibacterial efficiency of ZnLa and ZnSO4 in mice with ETEC infection, a total of 36 ICR-weaned female mice were randomly divided into ZnLa, ZnLa+ETEC, ZnSO4, and ZnSO4 and ETEC infection groups (ZnSO4+ETEC); moreover, the growth curve of ETEC also compared ZnLa and ZnSO4 in vitro. Mice pretreated with ZnLa were effectively guarded against body weight losses and increases in diarrhea scores induced by ETEC. ZnLa pretreatment also prevented intestinal barrier damage and ion transport in mice challenged with ETEC, as evidenced by the fact that the intestinal villus height and the ratio of villus height and crypt depth, tight junction protein, and Na+ absorption were higher, whereas intestinal permeability and anion secretion were lower in mice pretreated with ZnLa. In addition, ZnLa conferred effective protection against ETEC-induced intestinal inflammatory responses, as the increases in protein and mRNAs of proinflammatory cytokines were prevented in serum and jejunum, which was likely associated with the TLR4/MYD88/NF-κB signaling pathway. The increase in ETEC shedding and virulence-related gene expression was prevented in mice with ZnLa pretreatment. Finally, the growth of ETEC and virulence-related gene expression were lower in the ZnLa group than in ZnSO4 with an equal concentration of zinc. These findings suggest that ZnLa is a promising prevention strategy to remedy ETEC infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.