Background: Microglia are important brain immune cells. However, it is difficult to differentiate microglia from monocyte-derived macrophages. To visualize microglia changes following intracerebral hemorrhage (ICH), we utilized a genetic knock-in mouse line, Tmem119 (transmembrane protein 119)-EGFP (enhanced green fluorescent protein), which expresses EGFP specifically in microglia. Methods: There were 2 parts in this study. First, autologous blood was injected into the right basal ganglia to model ICH in Tmem119-EGFP mice. Mice were euthanized at 4 hours, days 1, 3, and 7 after ICH. Sham animals were used as controls. Second, Tmem119-EGFP mice were injected with iron or thrombin, factors involved in ICH-induced injury, and were euthanized at 4 hours. Naïve mice were controls. Brains were harvested for histology. Results: The number of perihematomal microglia significantly decreased 1 day after ICH, but markedly increased by days 3 and 7. Microglia death was also induced by intracerebral iron injection while microglia proliferation was found with intracerebral thrombin injection. Conclusions: Perihematomal microglia death and proliferation after ICH are visualized in vivo with a Tmem119-EGFP transgenic mouse line. Iron and thrombin may contribute to ICH-induced microglia death and proliferation, respectively.
Aims White matter (WM) injury is a critical factor associated with worse outcomes following subarachnoid hemorrhage (SAH). However, the detailed pathological changes are not completely understood. This study investigates temporal changes in the corpus callosum (CC), including WM edema and oligodendrocyte death after SAH, and the role of lipocalin‐2 (LCN2) in those changes. Methods Subarachnoid hemorrhage was induced in adult wild‐type or LCN2 knockout mice via endovascular perforation. Magnetic resonance imaging was performed 4 hours, 1 day, and 8 days after SAH, and T2 hyperintensity changes within the CC were quantified to represent WM edema. Immunofluorescence staining was performed to evaluate oligodendrocyte death and proliferation. Results Subarachnoid hemorrhage induced significant CC T2 hyperintensity at 4 hours and 1 day that diminished significantly by 8 days post‐procedure. Comparing changes between the 4 hours and 1 day, each individual mouse had an increase in CC T2 hyperintensity volume. Oligodendrocyte death was observed at 4 hours, 1 day, and 8 days after SAH induction, and there was progressive loss of mature oligodendrocytes, while immature oligodendrocytes/oligodendrocyte precursor cells (OPCs) proliferated back to baseline by Day 8 after SAH. Moreover, LCN2 knockout attenuated WM edema and oligodendrocyte death at 24 hours after SAH. Conclusions Subarachnoid hemorrhage leads to T2 hyperintensity change within the CC, which indicates WM edema. Oligodendrocyte death was observed in the CC within 1 day of SAH, with a partial recovery by Day 8. SAH‐induced WM injury was alleviated in an LCN2 knockout mouse model.
Both monocyte-derived macrophages (MDMs) and brain resident microglia participate in hematoma resolution after intracerebral hemorrhage (ICH). Here, we utilized a transgenic mouse line with enhanced green fluorescent protein (EGFP) labeled microglia (Tmem119-EGFP mice) combined with a F4/80 immunohistochemistry (a pan-macrophage marker) to visualize changes in MDMs and microglia after ICH. A murine model of ICH was used in which autologous blood was stereotactically injected into the right basal ganglia. The autologous blood was co-injected with CD47 blocking antibodies to enhance phagocytosis or clodronate liposomes for phagocyte depletion. In addition, Tmem119-EGFP mice were injected with the blood components peroxiredoxin 2 (Prx2) or thrombin. MDMs entered the brain and formed a peri-hematoma cell layer by day 3 after ICH and giant phagocytes engulfed red blood cells were found. CD47 blocking antibody increased the number of MDMs around and inside the hematoma and extended MDM phagocytic activity to day 7. Both MDMs and microglia could be diminished by clodronate liposomes. Intracerebral injection of Prx2 but not thrombin attracted MDMs into brain parenchyma. In conclusion, MDMs play an important role in phagocytosis after ICH which can be enhanced by CD47 blocking antibody, suggesting the modulation of MDMs after ICH could be a future therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.