SummaryThe diffuse-type gastric cancer (DGC) constitutes a subgroup of gastric cancer with poor prognosis and no effective molecular therapies. Here, we report a phosphoproteomic landscape of DGC derived from 83 tumors together with their nearby tissues. Based on phosphorylation, DGC could be classified into three molecular subtypes with distinct overall survival (OS) and chemosensitivity. We identified 16 kinases whose activities were associated with poor OS. These activated kinases covered several cancer hallmark pathways, with the MTOR signaling network being the most frequently activated. We proposed a patient-specific strategy based on the hierarchy of clinically actionable kinases for prioritization of kinases for further clinical evaluation. Our global data analysis indicates that in addition to finding activated kinase pathways in DGC, large-scale phosphoproteomics could be used to classify DGCs into subtypes that are associated with distinct clinical outcomes as well as nomination of kinase targets that may be inhibited for cancer treatments.
Signaling pathway alterations in COVID-19 of living humans as well as therapeutic targets of the host proteins are not clear. We analyzed 317 urine proteomes, including 86 COVID-19, 55 pneumonia and 176 healthy controls, and identified specific RNA virus detector protein DDX58/RIG-I only in COVID-19 samples. Comparison of the COVID-19 urinary proteomes with controls revealed major pathway alterations in immunity, metabolism and protein localization. Biomarkers that may stratify severe symptoms from moderate ones suggested that macrophage induced inflammation and thrombolysis may play a critical role in worsening the disease. Hyper activation of the TCA cycle is evident and a macrophage enriched enzyme CLYBL is up regulated in COVID-19 patients. As CLYBL converts the immune modulatory TCA cycle metabolite itaconate through the citramalyl-CoA intermediate to acetyl-CoA, an increase in CLYBL may lead to the depletion of itaconate, limiting its anti-inflammatory function. These observations suggest that supplementation of itaconate and inhibition of CLYBL are possible therapeutic options for treating COVID-19, opening an avenue of modulating host defense as a means of combating SARS-CoV-2 viruses.
Supporting Information
The supporting information is available online at 10.1007/s11427-021-2070-y. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
While precision medicine driven by genome sequencing has revolutionized cancer care, such as lung cancer, its impact on gastric cancer (GC) has been minimal. GC patients are routinely treated with chemotherapy, but only a fraction of them receive the clinical benefit. There is an urgent need to develop biomarkers or algorithms to select chemo-sensitive patients or apply targeted therapy. Here, we carried out retrospective analyses of 1,020 formalin-fixed, paraffin-embedded GC surgical resection samples from 5 hospitals and developed a mass spectrometry-based workflow for proteomic subtyping of GC. We identified two proteomic subtypes: the chemo-sensitive group (CSG) and the chemo-insensitive group (CIG) in the discovery set. The 5-year overall survival of CSG was significantly improved in patients who had received adjuvant chemotherapy after surgery compared with those who received surgery only (64.2% vs. 49.6%; Cox P-value=0.002), whereas no such improvement was observed in CIG (50.0% vs. 58.6%; Cox P-value=0.495). We validated these results in an independent validation set. Further, differential proteome analysis uncovered 9 FDA-approved drugs that may be applicable for targeted therapy of GC. A prospective study is warranted to test these findings for future GC patient care.
A number of novel small molecules, safrole oxide derivatives 4a-c, 6a-c, 9a-h, were synthesized by the reaction of safrole oxide with anilines 3 and 5, or its alkyl allyl ether derivative 7 with alkyl bromide 8 in moderate yields. The antiproliferative effects of all the target molecules on A549 cell growth were investigated and it was found that the 14 novel compounds could suppress A549 lung cancer cell growth. Among them, compound 6b was the most effective compound in inhibiting the proliferation of A549 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.