Background: Cervical squamous cell carcinoma (CSCC) is responsible for 80-85% of cervical cancer. Cyclin B1 (CCNB1) represents a hub gene during the development of cervical cancer. However, the oncogenic role of CCNB1 in CSCC remains unclear. Our study aims to explore the mechanism underlying CCNB1 regulation on cell cycle progression in CSCC cells. Methods: First, we analyzed differentially expressed genes from CSCC dataset GSE63678 and conducted gene function enrichment analysis. Subsequently, CCNB1 expression was knocked down in CSCC cell lines to assess cell proliferation, apoptosis, and cell cycle distribution. After the validation of the binding relationship between forkhead box protein M1 (FOXM1) and the promoter of CCNB1, the effect of FOXM1 on CCNB1 expression and on CSCC cell growth and apoptosis was verified. We further analyzed the histone ChIP-Seq data of CCNB1 in CSCC cells and measured the acetylation levels of the CCNB1 promoter histones. Results: CCNB1 was overexpressed in CSCC tissues and cells, and CCNB1 silencing inhibited the growth of CSCC cells, and promoted cell cycle arrest and apoptosis. FOXM1 potentiated CCNB1 transcription by binding to its promoter and recruiting CBP/P300, a histone acetyltransferase. Further increasing FOXM1 expression or increasing P300 activity in CSCC cells with CCNB1 knockdown elevated CCNB1 expression and proliferation and cell cycle progression of CSCC cells. Knockdown of CCNB1 activated the p53 pathway in cells. Conclusion: FOXM1 inhibited the activation of the p53 pathway by recruiting CBP/P300, which promoted the transcription of CCNB1, resulting in the growth and cell cycle progression of CSCC cells.
Emerging evidence suggests the important involvements of circular RNAs (cir-cRNAs) in cancer progression. This study focuses on the function of Circ_0109046 on the malignancy of endometrial carcinoma (EC) cells and the molecules involved. First, high expression of Circ_0109046 was found in EC tissues compared to the adjacent tissues, and it predicted unfavorable prognosis in patients. Similarly, high expression of Circ_0109046 was confirmed in EC cells relative to that in normal endometrial epithelial cells. Silencing of Circ_0109046 in AN3-CA cells inhibited proliferation and aggressiveness but increased apoptosis of cells. Circ_0109046 was mainly sub-localized in cytoplasm, and it mediated SOX9 expression through sponging microRNA (miR)-105. The proliferation and aggressiveness of EC cells suppressed by Circ_0109046 downregulation was recovered upon SOX9 overexpression. SOX9 activated the Wnt/β-catenin pathway. Furthermore, downregulation of Circ_0109046 reduced the growth of xenograft tumors in nude mice. This study evidenced that Circ_0109046 upregulates SOX9 expression through sponging miR105, leading to activation of Wnt/β-catenin signaling and the malignant growth of EC. This study may offer novel understanding in EC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.