A novel ensemble Yu’s norm-based deep metric learning (DMLYu) is proposed to diagnose the fault of rolling bearing in this paper, which can diagnose the fault classes through the information fusion method that combines the different diagnosis results produced by several Yu’s norm-based deep metric learning models with different scale signals. The suggested method is composed of three steps: firstly the vibration signal is decomposed into multiple IMF components by the EEMD method, then these IMF components are input into the DMLYu models which is called the modified deep metric learning model based on Yu’s norm-based similarity measure, respectively, to extract the feature parameters to diagnose the fault of rolling bearings from the different scales, and finally the final diagnosis decision is made by fusion strategy based on Bayesian belief method (BBM). At last, through a multifaceted diagnosis test of rolling bearing on different datasets, the effectiveness of the proposed ensemble DMLYu based on BBM is verified, and the superiority of the proposed diagnosis method is validated by comparing its diagnosis accuracy and generalization with DMLYu based on voting method and the individual DMLYu model.
A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In2O3 composite, is designed to differentiate NO2, NH3, C3H6, CO within the level of 50–400 ppm. Results indicate that with adding 15 wt.% ZnO to In2O3, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.
is paper investigates the hybrid-driven mechanism problem for Markov jump system, where both channel quantization (BCQ) and network-induced delay based on uncertain network are considered. Firstly, comparing with the traditional event-triggered scheme, a hybrid-driven mechanism is employed in networked control systems (NCSs) for the finite capacity of communication bandwidth resources and system performance in equilibrium. en, the quantization technology is applied in the communication channel from sensor-to-controller and controller-to-actuator. e application of BCQ is for further investigation that mitigate data packet transmission rate. irdly, Markov jump system is modeled for the hybrid-driven mechanism and network-induced delay. By constructing the Lyapunov-Krasovskii function, a sufficient condition is derived as the stability criterion, and the controller is designed in which the nonlinear term is rewritten for simplifying the calculation. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.