A three-dimensional hierarchical porous carbon is synthesized via a facile chemical activation route with garlic skin as the precursor and KOH as the activating agent. The as-obtained carbon presents a high specific surface area of 2818 m g and a hierarchical porous architecture containing macroporous frameworks, mesopores (2-4 nm), and micropores (0.6-1.0 nm). As the electrode material for a supercapacitor, due to its unique interconnected porous structure, this garlic skin-derived carbon exhibits excellent electrochemical performance and cycling stability. At a current density of 0.5 A g, the capacitance is up to 427 F g (162 F cm). Even at a high current density of 50 A g, the capacitance can be maintained to a high value of 315 F g (120 F cm). After charging-discharging at a current density of 4.5 A g for 5000 cycles, the capacitance retention is as high as 94%. The results suggest that this garlic skin-derived 3D hierarchical porous carbon is a promising electrode material for high-performance supercapacitors.
Background: A previous study has shown that 81% of the COVID-19 patients had mild or moderate symptoms. However, most studies on the sequelae in COVID-19 patients focused on severe cases and the long-term follow-up studies on the health consequences in non-severe cases are limited. The current study aimed to assess the sequelae of COVID-19 in patients nearly 1 year after diagnosis with a particular focus on the recovery of patients with non-severe COVID-19.Methods: We enrolled 120 patients infected with SARS-CoV-2 discharged from Wuhan Union hospital west district (designated hospital for COVID-19) and Fangcang shelter hospitals between January 29, 2020 and April 1, 2020. All participants were asked to complete a series of questionnaires to assess their symptoms and quality of life and for psychological evaluation. Also, pulmonary function test, chest CT, 6-min walking test (6MWT), routine blood test, liver and kidney function tests, fasting blood glucose test, lipid test, and immunoglobulin G antibody test were performed to evaluate their health.Results: The mean age of the study population was 51.6 ± 10.8 years. Of the 120 patients, 104 (86.7%) were cases of non-severe COVID-19. The follow-up study was performed between November 23, 2020 and January 11, 2021, and the median time between the diagnosis and the follow-up was 314.5 (IQR, 296–338) days. Sleep difficulties, shortness of breath, fatigue, and joint pain were common symptoms observed during follow-up and nearly one-third of the non-severe cases had these symptoms. A total of 50 (41.7%) and 45 (37.5%) patients reported anxiety and depression, respectively. And 18.3% of the patients showed negative results in the IgG test at the follow-up, which correlated with the severity of the infection (R = 0.203, p = 0.026), and the proportion of IgG negative cases in non-severe COVID-19 patients was higher than that in the severe cases (20.2 vs. 6.3%). Pulmonary diffusion impairment was reported in 30 (26.1%) out of 115 patients, and 24 (24.2%) out of the 99 non-severe cases. The values of forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FVC/FEV1, vital capacity (VC), total lung capacity (TLC), and residual volume (RV) were less than the normal range in 1.7, 8.6, 0.9, 11.2, 7.0, and 0.9% of the patients, respectively. A total of 55 (56.7%) out of the 97 patients showed abnormal CT findings, including ground-glass opacities (GGO), bronchiectasis, nodules, lines and bands, and fibrosis. Furthermore, there was a correlation between all the SF-36-domain scores and the duration of hospitalization, pulmonary function, and a 6MWT.Conclusions: At the nearly 1-year follow-up, COVID-19 survivors still had multi-system issues, including those in the respiratory functioning, radiography, quality of life, and anxiety and depression. Moreover, non-severe cases also showed some sequelae and the proportion of IgG negative cases in the non-severe patients was higher than that in severe cases. Therefore, conducting follow-ups and preventing the reinfection of SARS-CoV-2 in this group is necessary.
The outputs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic, Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project (CMIP6) are described in this paper. The CAS FGOALS-f3-L model, experiment settings, and outputs are all given. In total, there are three ensemble experiments over the period 1979-2014, which are performed with different initial states. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets. The baseline performances of the model are validated at different time scales. The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden-Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation. These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.