Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid IDSs are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.
Access to resources by users may need to be granted only upon certain conditions and contexts, perhaps particularly in cyber-physical settings. Unfortunately, creating and modifying context-sensitive access control solutions in dynamic environments creates ongoing challenges to manage the authorization contexts. This paper proposes RASA, a context-sensitive access authorization approach and mechanism leveraging unsupervised machine learning to automatically infer risk-based authorization decision boundaries. We explore RASA in a healthcare usage environment, wherein cyber and physical conditions create context-specific risks for protecting private health information. The risk levels are associated with access control decisions recommended by a security policy. A coupling method is introduced to track coexistence of the objects within context using frequency and duration of coexistence, and these are clustered to reveal sets of actions with common risk levels; these are used to create authorization decision boundaries. In addition, we propose a method for assessing the risk level and labelling the clusters with respect to their corresponding risk levels. We evaluate the promise of RASA-generated policies against an heuristic rule-based policy. By employing three different coupling features (frequency-based, duration-based, and combined features), the decisions of the unsupervised method and that of the policy are more than 99% consistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.