The phosphorus (P) fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake were investigated through molybdenum blue/ascorbic acid method and indoor simulation experiments, respectively. The results showed that the highest total phosphorus concentration in overlying water (W-TP) was found in S1 which was in the hypereutrophic type. The mean concentration of particulate organic phosphorus (POP) was the most abundant P fraction (31.35% of the W-TP). The results of TP contents in sediments (S-TP) indicated that the most sampling sites were in the mild level of pollution. The contents of calcium-bound P (HCl-P) and residual P (Res-P) fractions together comprised 83.03-98.10% of the S-TP. Pseudo-second-order models fitted well with the adsorption-desorption kinetic of P fractions. The Langmuir and Freundlich models well described the adsorption isotherm of P fractions. The results of adsorption-desorption of P fractions indicated that the adsorption capacity was strong, the chemical adsorption was dominant, and the sediments was a source of P. Accordingly, we concluded that the Wuliangsuhai Lake was in the moderate pollution level, and the sediments as a source could desorb P in natural aquatic environment.
AbstractmicroRNAs (miRNAs) are endogenous small RNAs that are key regulatory factors participating in various biological activities such as the signaling of phosphorus deficiency in the plant. Previous studies have shown that miR156 expression was modulated by phosphorus starvation in Arabidopsis and soybean. However, it is not clear whether the over-expression of soybean miR156b (GmmiR156b) can improve a plant’s tolerance to phosphorus deficiency and affect yield component traits. In this study, we generated Arabidopsis transgenic lines overexpressing GmmiR156b and investigated the plant’s response to phosphorus deficiency. Compared with the wild type, the transgenic Arabidopsis seedlings had longer primary roots and higher phosphorus contents in roots under phosphorus-deficit conditions, but lower fresh weight root/shoot ratios under either phosphorus-deficient or sufficient conditions. Moreover, the GmmiR156b overexpression transgenic lines had higher phosphorus content in shoots of adult plants and grew better than the wide type under phosphorus-deficient conditions, and exhibited increased seed yields as well as strong pleiotropic developmental morphology such as dwarfness, prolonged growth period, bushy shoot/branching, and shorter silique length, suggesting that the transgenic lines were more tolerant to phosphorus deficiency. In addition, the expression level of four SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes (i.e., AtSPL4/5/6/15) were markedly suppressed in transgenic plants, indicating that they were the main targets negatively regulated by GmmiR156b (especially AtSPL15) and that the enhanced tolerance to phosphorus deficiency and seed yield is conferred mainly by the miR156-mediated downregulation of AtSPL15.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.