Verticillium dahliae is a soil-borne, hemibiotrophic phytopathogenic fungus that causes wilting in crop plants. Here, we constructed a random insertional mutant library using Agrobacterium tumefaciens-mediated transformation to study the pathogenicity and regulatory mechanisms of V. dahliae. The fungal-specific transcription factor-encoding gene Vdpf was shown to be associated with vegetative growth and virulence, with the highest transcript expression occurring during conidia formation in the V991 strain. The deletion mutants (ΔVdpf) and insertion mutants (IMΔVdpf) produced fewer conidia than did the wild-type (WT) fungi, which contributed to the reduced virulence. Unlike the WT, the complemented strains and IMΔVdpf, ΔVdpf formed swollen, thick-walled and hyaline mycelium rather than melanized microsclerotia. The ΔVdpf mutants were melanin deficient, with undetectable expression of melanin biosynthesis-related genes (Brn1, Brn2 and Scd1). The melanin deficiency was related to cyclic adenosine monophosphate (cAMP) and the G-protein-coupled signalling pathways in this study. Similar to the WT and complemented strains, the ΔVdpf and IMΔVdpf mutants could also successfully penetrate into cotton and tobacco roots, but displayed reduced virulence because of lower biomass in the plant roots and significantly reduced expression of pathogenicity-related genes in V. dahliae. In conclusion, these results provide insights into the role of Vdpf in melanized microsclerotia formation, conidia production and pathogenicity.
Verticillium dahliae is a soil-borne phytopathogenic fungus that causes vascular wilt diseases in a wide variety of crop plants, resulting in extensive economic losses. In the past 5 years, progress has been made in elaborating the interaction between this hemibiotrophic fungus and its host plants. Some genes responsible for the vegetative growth and/or pathogenicity in V. dahliae have been identified. Plants have accrued a series of defense mechanisms, including inducible defense signaling pathways and some resistant genes to combat V. dahliae infection. Here, we have reviewed the progress in V. dahliae-plant interaction research.
Chloranthus, a genus of the family Chloranthaceae, which is mainly distributed in eastern and southern Asia, has been used in Chinese folk medicine due to its antitumor, antifungal, and anti-inflammatory activities. This review compiles the research on isolation, structure elucidation, structural diversity, and bioactivities of Chloranthus secondary metabolites reported between 2007 and 2013. The metabolites listed encompass 82 sesquiterpenoids, 50 dimeric sesquiterpenoids, 15 diterpenoids, one coumarin, and five other compounds. Among them, dimeric sesquiterpenoids, the characteristic components of plants from the genus Chloranthus, have attracted considerable attention due to their complex structures and significant biological features, e.g., antitumor, antibacterial, antifungal, anti-inflammatory, and hepatoprotective activities, and potent and selective inhibition of the delayed rectifier (IK) K(+) current and tyrosinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.