Abstract. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently characterized oncoprotein involved in the progression of several human malignancies. The present study aimed to investigate the clinical significance and biological function of CIP2A in astrocytoma. CIP2A expression was analyzed in 135 archived astrocytoma specimens using immunohistochemistry. Of these specimens, 75 cases (55.6%) overexpressed CIP2A. The CIP2A overexpression was observed to be positively correlated with advanced tumor grade (P<0.001). siRNA-mediated knockdown of CIP2A was performed in A172 and U87 cell lines. MTT, colony formation and soft agar colony formation assays and Annexin V/propidium iodide analysis were performed to assess the role of CIP2A in cell proliferation and apoptosis. CIP2A depletion in the astrocytoma cell lines inhibited cell growth, reduced anchorage-independent cell growth and increased apoptosis. In addition, CIP2A depletion increased caspase-3 cleavage and downregulated c-Myc, Bcl-2 and phospho-Akt expression. These results validate the role of CIP2A as a clinically relevant oncoprotein and establish CIP2A as a promising therapeutic target of astrocytoma.
Helicobacter pylori (H. pylori) infection is the strongest causative factor of gastric cancer. Growing evidence suggests that the complex crosstalk of H. pylori and the tumor microenvironment (TME) exerts a profound influence on gastric cancer progression. Hence, there is emerging interest to in-depth comprehension of the mechanisms of interplay between H. pylori and the TME. This review discusses the regulatory mechanisms underlying the crosstalk between H. pylori infection and immune and stromal cells, including tumor-associated macrophages (TAMs), neutrophils, dendritic cells, myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, B and T cells, cancer associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs), within the TME. Such knowledge will deepen the understanding about the roles of H. pylori in the immune evasion mechanism in gastric cancer and contribute to the development of more effective treatment regimens against H. pylori-induced gastric cancer.
Abstract:The objective of this study is to investigate the effects of key factors on the powertrain loading dynamic characteristics and fatigue damage. First, the engine and the transmission output shaft torque of a multi-axle vehicle powertrain system were measured by proving grounds (PG) testing and analyzed with a conclusion that the powertrain loading changes were mainly related to three key factors: the mean engine torque, the harmonic engine torque, and the vibration properties of the system. Subsequently, a dynamic model considering the three factors was built and validated by the test data. Finally, fatigue damage of shaft parts and gear parts were calculated to investigate the influence degrees of the three factors. The results show that, the harmonic engine torque and the vibration properties of the powertrain system have a great influence on the fatigue damage of shaft parts, and the mean engine torque is the main factor causing the fatigue damage of gear parts.
DC transformer is the core equipment to realize the convergence and transmission of new energy such as solar energy, wind energy, etc. It also plays a key role in the construction of large-scale DC power grid in the future. Therefore, DC transformer has a broad application prospects in the future energy Internet era. This paper briefly summarizes the current research on DC transformer at home and abroad, and also summarizes the current research on DC transformer in the future. On the basis of the basic principle of decomposing DC transformers, the characteristics and applications of common DC transformers are classified and the problems to be solved are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.