Spatially ordered embryo-like structures self-assembled from blastocyst-derived stem cells can be generated to mimic embryogenesis in vitro. However, the assembly system and developmental potential of such structures needs to be further studied. Here, we devise a nonadherent-suspension-shaking system to generate self-assembled embryo-like structures (ETX-embryoids) using mouse embryonic, trophoblast and extra-embryonic endoderm stem cells. When cultured together, the three cell types aggregate and sort into lineage-specific compartments. Signaling among these compartments results in molecular and morphogenic events that closely mimic those observed in wild-type embryos. These ETX-embryoids exhibit lumenogenesis, asymmetric patterns of gene expression for markers of mesoderm and primordial germ cell precursors, and formation of anterior visceral endoderm-like tissues. After transplantation into the pseudopregnant mouse uterus, ETX-embryoids efficiently initiate implantation and trigger the formation of decidual tissues. The ability of the three cell types to self-assemble into an embryo-like structure in vitro provides a powerful model system for studying embryogenesis.
Preimplantation embryos undergo zygotic genome activation and lineage specification resulting in three distinct cell types in the late blastocyst. The molecular mechanisms underlying this progress are largely unknown in bovines. Here, we sought to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the bovine blastocyst. Using a quantitative microfluidics approach in single cells, we analyzed mRNA levels of 96 genes known to function in early embryonic development and maintenance of stem cell pluripotency in parallel in 384 individual cells from bovine preimplantation embryos. The developmental transitions can be distinguished by distinctive gene expression profiles and we identified NOTCH1, expressed in early developmental stages, while T-box 3 (TBX3) and fibroblast growth factor receptor 4 (FGFR4), expressed in late developmental stages. Three lineages can be segregated in bovine expanded blastocysts based on the expression patterns of lineage-specific genes such as disabled homolog 2 (DAB2), caudal type homeobox 2 (CDX2), ATPase H+/K+ transporting non-gastric alpha2 subunit (ATP12A), keratin 8 (KRT8), and transcription factor AP-2 alpha (TFAP2A) for trophectoderm; GATA binding protein 6 (GATA6) and goosecoid homeobox (GSC) for primitive endoderm; and Nanog homeobox (NANOG), teratocarcinoma-derived growth factor 1 (TDGF1), and PR/SET domain 14 (PRDM14) for epiblast. Moreover, some lineage-specific genes were coexpressed in blastomeres from the morula. The commitment to trophectoderm and inner cell mass lineages in bovines occurs later than in the mouse, and KRT8 might be an earlier marker for bovine trophectoderm cells. We determined that TDGF1 and PRDM14 might play pivotal roles in the primitive endoderm and epiblast specification of bovine blastocysts. Our results shed light on early cell fate determination in bovine preimplantation embryos and offer theoretical support for deriving bovine embryonic stem cells.
Background: Pigs have emerged as one of the most popular large animal models in biomedical research, which in many cases is considered as a superior choice over rodent models. In addition, transplantation studies using pig pluripotent stem (PS) cell derivatives may serve as a testbed for safety and efficacy prior to human trials. Recently, it has been shown that mouse and human PS cells cultured in LCDM (recombinant human LIF, CHIR 99021, (S)-(+)-dimethindene maleate, minocycline hydrochloride) medium exhibited extended developmental potential (designated as extended pluripotent stem cells, or EPS cells), which could generate both embryonic and extraembryonic tissues in chimeric mouse conceptus. Whether stable pig induced pluripotent stem (iPS) cells can be generated in LCDM medium and their chimeric competency remains unknown. Methods: iPS cells were generated by infecting pig pericytes (PC) and embryonic fibroblasts (PEFs) with a retroviral vector encoding Oct4, Sox2, Klf4, and cMyc reprogramming factors and subsequently cultured in a modified LCDM medium. The pluripotency of PC-iPS and PEF-iPS cells was characterized by examining the expression of pluripotencyrelated transcription factors and surface markers, transcriptome analysis, and in vitro and in vivo differentiation capabilities. Chimeric contribution of PC-iPS cells to mouse and pig conceptus was also evaluated with fluorescence microscopy, flow cytometry, and PCR analysis.
The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms.
Summary The pluripotency of stem cells determines their developmental potential. While the pluripotency states of pluripotent stem cells are variable and interconvertible, the mechanisms underlying the acquisition and maintenance of pluripotency remain largely elusive. Here, we identified that methylenetetrahydrofolate dehydrogenase (NAD + -dependent), methenyltetrahydrofolate cyclohydrolase ( Mthfd2 ) plays an essential role in maintaining embryonic stem cell pluripotency and promoting complete reprogramming of induced pluripotent stem cells. Mechanistically, in mitochondria, Mthfd2 maintains the integrity of the mitochondrial respiratory chain and prevents mitochondrial dysfunction. In the nucleus, Mthfd2 stabilizes the phosphorylation of EXO1 to support DNA end resection and promote homologous recombination repair. Our results revealed that Mthfd2 is a dual-function factor in determining the pluripotency of pluripotent stem cells through both mitochondrial and nuclear pathways, ultimately ensuring safe application of pluripotent stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.