This paper studies the radar cross section (RCS) of carrier electronic warfare airplanes. Under the typical naval operations section, the mathematical model of the radar wave's pitch angle incidence range analysis is established. Based on the CATIA software, considering dynamic deflections of duck wing leading edge flaps, flaperons, horizontal tail, and rudder, as well as aircraft with air-to-air missile, anti-radiation missile, electronic jamming pod, and other weapons, the 3D models of carrier electronic warfare airplanes Model A and Model B with weapons were established. Based on the physical optics method and the equivalent electromagnetic flow method, by the use of the RCSAnsys software, the characteristics of carrier electronic warfare airplanes' RCS under steady and dynamic flights were simulated under the UHF, X, and S radar bands. This paper researches the detection probability of aircraft by radars under the condition of electronic warfare, and completes the mathematical statistical analysis of the simulation results. The results show that: The Model A of carrier electronic warfare airplane is better than Model B on stealth performance and on discover probability by radar detection effectively. ª 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Electromagnetic protection materials are widely used in both military and civilian fields. However, the limited wave-absorbing band and low transparency of conventional electromagnetic protection materials are the impediment for extensive applications. Here, a transparent and electrically tunable wave-absorbing metamaterial for stealth technology and electromagnetic protection has been theoretically and experimentally realized. The trend of the absorption feature change in simulation is consistent with that of the experiment results. The main part of this material adopts a sandwich structure consisting of two layers of indium tin oxide (ITO) and one layer of glass in between. The upper ITO layer is periodically patterned and combined with varactor diodes, which function as a frequency-selective surface. The effective operating frequency range is in the S-band, which covers the common frequency band of WiFi and many other electronic devices. The wave absorbing performance of this material can be electronically tunable by changing the applied voltage. The main absorption peak can be up to 90% with a tunable amplitude range of 30% and a tunable frequency band range of 1 GHz, and the transmittance of the sample in the visible is 80.23%. The metamaterial has high performance on electromagnetic shielding, whose effectiveness is larger than 30 dB in the range of 2.6–3.95 GHz. This transparent and tunable metamaterial has great potential for the applications in electromagnetic protection and stealth.
This paper presents a novel formulation for dispersive media computation in finite-difference time-domain (FDTD). Motivated by conventional recursive convolution (RC) methods in handling convolution integral, the method name quadratic RC (QRC) makes improvement in the approximation of electric field in convolution integral. The electric field is approximated by quadratic function determined by the fields at three time steps at current, next and former. Via quadratic interpolation, the convolution integral result is approximated by the linear combination of three electric fields, rather than two fields in trapezoidal RC (TRC) or piecewise linear RC (PLRC) and one field in constant RC (CRC). Because three electric fields is required for the convolution integral, the method needs two more back level storage of the electric fields to fulfill the recursion process. Numerical demonstrations of Debye and Drude slab's transmission and reflection coefficients demonstrate the efficiency and accuracy of the novel method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.