When sawing during autopsies on human remains, fine dust is produced, which consists of particles of sizes that may fall within the human respirable range, and can act as vectors for pathogens. The goal of this study was to explore the potential effects of saw blade frequency and saw blade contact load on the number and size of airborne bone particles produced. The methodology involved the use of an oscillating saw with variable saw blade frequencies and different saw blade contact loads on dry human femora. Released airborne particles were counted per diameter by a particle counter inside a closed and controlled environment. Results corroborated with the hypotheses: higher frequencies or lower contact loads resulted in higher numbers of aerosol particles produced. However, it was found that even in the best-case scenario tested on dry bone, the number of aerosol particles produced was still high enough to provide a potential health risk to the forensic practitioners. Protective breathing gear such as respirators and biosafety protocols are recommended to be put into practice to protect forensic practitioners from acquiring pathologies, or from other biological hazards when performing autopsies.
When sawing bone for medical or medico-legal procedures, fine, airborne dust is produced (aerosols) that can pose a health hazard when inhaled. The aim of this study was to determine the influence of saw blade frequency and contact load, bone condition, test environment, and saw blade type, on the production of aerosol particles. A custom test setup was designed, manufactured and used in 8 bone sawing experiments, using a particle counter to determine the production of aerosol particles while varying the 5 chosen parameters. The number of counted particles was highest with higher saw blade frequencies, lower saw blade contact loads, in dry completely skeletonized bone compared to fresh bone, and using an electrical oscillating saw compared to hand-sawing. Under all conditions, the high amount of aerosol counted posed potential health risks. The ventilation system that we tested was adequate in removing the produced particles, but these high-tech systems are not always available in developing countries or emergency situations. The production of aerosols can be reduced by optimizing the sawing parameters. However, even the lowest number of aerosol particles counted during the current study was high enough to cause potential health risks to practitioners. Safety precautions should be taken, such as external ventilation, proper breathing gear, and adequate protocols, to truly minimize the risk in all bone sawing scenarios.
The SARS-CoV-2 pandemic resulted in shortages of production and test capacity of FFP2-respirators. Such facemasks are required to be worn by healthcare professionals when performing aerosol-generating procedures on COVID-19 patients. In response to the high demand and short supply, we designed three models of facemasks that are suitable for local production. As these facemasks should meet the requirements of an FFP2-certified facemask, the newly-designed facemasks were tested on the filtration efficiency of the filter material, inward leakage, and breathing resistance with custom-made experimental setups. In these tests, the facemasks were benchmarked against a commercial FFP2 facemask. The filtration efficiency of the facemask's filter material was also tested with coronavirus-loaded aerosols under physiologically relevant conditions. This multidisciplinary effort resulted in the design and production of facemasks that meet the FFP2 requirements, and which can be produced at local production facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.